Abstract

Background: Cervical spondylotic myelopathy (CSM) is managed by conservative or surgical measures. While surgery is often performed in cases of longstanding or severe CSM, there is a lack of evidence concerning its efficacy. Transcranial magnetic stimulation (TMS) is a quick, safe, painless and non-invasive technique to study conduction in the descending corticospinal pathways in the spinal cord. The conduction time from the motor cortex to the anterior horn cell [central motor conduction time (CMCT)] is a measure of the integrity of corticospinal pathways. We have previously established the role of TMS in diagnosis and screening of CSM. In this study, we further investigate the use MEPs obtained with TMS in the outcome prediction of severe CSM patients requiring operative intervention. Methods: We prospectively evaluated 46 consecutive patients (mean age, 57.6 years; range, 36 to 84 years; 28 men) presenting with clinical features of CSM over a 2-year period. Disease duration ranged from 6 to 24 months. A total of 45 healthy controls were studied for comparison. All patients underwent clinical scoring. Patients’ initial clinical score (S1) and postoperative scoring at 6 months (S2) were based on a modified Japan Orthopedic Association Scoring Scale. A Modified Recovery Rate (MRR) was calculated based on the formula: (S2 – S1/17 – S1) x 100. We regarded a good surgical outcome as MRR of 50 or above. This was depicted as MRR50. The patients were separated into 4 groups according to the degree of cord compression by degenerative osteo-cartilaginous elements at the most significant level on MRI. TMS studies were performed before surgery. Each investigator was blinded to the results of the other investigators. Results: The upper limb (UL) CMCT (r = -0.507, P <0.0005) and lower limb (LL) CMCT (r = - 0.452, P = 0.002) were significantly and negatively correlated with S1. Similarly, UL MEP amplitude (r = 0.494, P <0005) and LL MEP amplitude (r = 0.305, P = 0.039) were significantly correlated with S1. Surgery consisted of anterior or posterior decompression with cervical laminoplasty, performed by an experienced team of orthopaedic surgeons. No significant intraoperative or postoperative complications were documented. Surgery resulted in significantly improved clinical scoring (unpaired t test, P <0.0005). No correlation between clinical scoring with patients’ age, disease duration, severity or levels of cord compression on MRI was found. ULCMCT and MEP amplitude abnormality were significantly associated with improvement in clinical scoring after surgery (Mann-Whitney test, P<0.05). The UL CMCT was the independent predictor of a good clinical outcome after surgery (odds ratio, 9.09; P = 0.011). Conclusions: In early CSM, lateral corticospinal tracts are first to be affected. It is thus possible that UL CMCT abnormality reflect more severe affection of the corticospinal tracts placed relatively more medially in the cervical cord. Surgical intervention may have then effectively relieved the clinically significant compression, leading to a better outcome. This was further corroborated by our finding of negative correlation of S1 with UL CMCT, suggesting that patients who were clinically more severe were also electrophysiologically more abnormal, and subsequently benefited more from surgical decompression relative to patients with normal UL CMCT. This the largest series, to our knowledge, showing for the first time that UL CMCT abnormality obtained with TMS is an independent predictor of good surgical outcome in severe CSM.

Key words: Cervical spondylosis, Surgery, Severe, Outcome, Transcranial magnetic stimulation, Motor-evoked potential, Magnetic resonance imaging

1 Department of Neurology, National Neuroscience Institute, Singapore
Address for Correspondence: A/Prof Yew-Long Lo, Department of Neurology, National Neuroscience Institute, Singapore General Hospital, Outram Road, Singapore 169608.
Email: lo.yew.long@sgh.com.sg

Ann Acad Med Singapore 2007;36:886-93
Cervical spondylosis is an extremely common condition managed by both physicians and surgeons in daily clinical practice. Cervical spondylotic myelopathy (CSM), resulting from longstanding degenerative impingement of the spinal cord and nerve roots by osteo-cartilaginous elements, is managed by conservative or surgical methods. While surgery is often performed in cases of longstanding or severe CSM, there is a lack of evidence concerning its efficacy.

In the surgical management of CSM, careful selection of patients is an important factor affecting clinical outcome. Previous studies have utilised somatosensory evoked potentials, magnetic resonance imaging (MRI) changes, computed tomography (CT) myelogram and even hyperbaric oxygen, to correlate with recovery rates, but only after CSM surgery has been performed. However, pre-operative prediction of CSM surgical outcome with trans-cranial magnetic stimulation (TMS) has not been investigated to date.

TMS is a quick, safe, painless and non-invasive technique to study conduction in the descending corticospinal pathways. It involves motor cortex stimulation by means of magnetic flux. The conduction time from the motor cortex to the anterior horn cell [central motor conduction time (CMCT)] is a measure of the integrity of corticospinal pathways. In a previously published large study of over 100 patients, we showed that TMS findings had good correlation with severity of cord compression seen on MRI. This study established the role of TMS for the functional evaluation of CSM in clinical practice. In a follow-up study, we validated our previous findings by showing that motor evoked potentials (MEPs) from the pectoralis major obtained with TMS can increase the diagnostic yield of cord compression in cervical spondylosis. CMCT from MEPs obtained with TMS can thus be a useful adjunct in the electrophysiological evaluation of CSM. With this scientific background, we prospectively evaluated 231 patients with cervical spondylosis in the largest study to date, correlating clinical, electrophysiological and MRI findings. This study showed that TMS had a 98% sensitivity and specificity for cord abnormality, using MRI as the reference standard. The findings pointed to the value of TMS as a rapid, inexpensive and non-invasive technique for screening patients with cervical spondylosis before MRI. The role of electrophysiology have also been extended into the operating theatre, where we showed that MEPs and somatosensory evoked potentials can be instrumental for monitoring of spinal cord surgery under different anaesthetic regimens.

These published studies provided the motivation to further investigate the role of TMS in cervical spondylosis. In this study, we investigate the use of MEPs as an independent predictor of surgical outcome in severe CSM and its role in the selection of patients for operative intervention.

Methods

With our institutional review board approval, we prospectively evaluated 46 consecutive patients (mean age, 57.6 years; range, 36 to 84 years; 28 men) presenting with clinical features of CSM over a 2-year period. Disease duration ranged from 6 to 24 months.

MRI

The patients were separated into 4 groups according to the degree of cord compression by degenerative osteo-cartilaginous (intervertebral disc herniation or combinations of herniated disc material accompanied by bony osteophytic lipping) elements at the most significant level on MRI. Specific details have been previously described.

TMS

All patients had informed consent before TMS was performed. Patients with past history of seizures, heart disease and intracranial operations were excluded. Magnetic stimulation was performed with a Dantec Mag 2 Stimulator (Dantec, Skovlunde, Denmark) by means of a Dantec S100 circular 10-cm diameter coil generating up to 1.9 Tesla in output. MEP recordings were made with adhesive surface electrodes in the first dorsal intersosseous (FDI) for upper limb (UL) and abductor hallucis (AH) for lower limb (LL) muscles. The coil centre was positioned over the vertex to obtain consistent MEPs of maximum amplitude with the relevant muscle in slight (20%) contraction. For AH recordings, the coil centre was displaced 2-cm frontally from the vertex.

Patients had multiple cortical stimulations, sometimes more than 10 for each muscle, to obtain distinctly recordable MEPs of consistent morphology. The average latency of the shortest of 10 most consistent responses was accepted. The minimum latency of 20 ‘F’ responses was obtained. CMCT was calculated with the formula: MEP latency – PMCT (peripheral motor conduction time). PMCT was calculated as (F latency + M latency –1)/2 in ms, where M represents the compound muscle action potential obtained from ulnar or tibial nerve electrical stimulation at the wrist and ankle respectively. MEP responses were considered absent if 10 consecutive stimulations up to 100% stimulator output consistently failed to elicit a reproducible MEP. For most trials, stimulator output of 80% was adequate to elicit consistent MEPs of similar waveform. MEPs included should be distinctly recordable and reproducible. Mean baseline to negative peak amplitudes based on an average of 10 highest amplitude MEPs trials were accepted from each limb.

We performed CMCT and measurements on 45 healthy
age-matched volunteers with informed consent using the above technique. The ages ranged from 26 to 84 years and included 26 males and 19 females. Controls were screened strictly for cervical disease and other neurological problems by the authors.

Data Analysis

Patients’ initial clinical score (S1) and postoperative scoring at 6 months (S2) were based on a modified Japan Orthopedic Association Scoring Scale (Table 1). A Modified Recovery Rate (MRR) was calculated based on the formula: \((S2 - S1/17 - S1) \times 100\). We regarded a good surgical outcome as MRR of 50 or above. This was depicted as MRR50.\(^{20,21}\) The clinical scoring was documented by an independent investigator blinded to the MRI and TMS findings. Postoperative scoring was documented by another investigator who did not perform the surgical procedure. Both the radiologist and electrophysiologist were blinded to patients’ clinical status during MRI or TMS testing. All the findings were collated at the end of the study period for analysis.

Statistical analysis was separately performed by a biostatistician using SPSS for Windows Version 10.1. The level of statistical significance was set at \(P < 0.05\). As some of the data normally distributed, for example, S1 and S2 values, which departed from normality (Shapiro-Wilk test, \(P = 0.005\) for S1 and \(P = 0.003\) for S2), it was decided that non-parametric methods be employed for statistical computation. However, despite this, further analysis of skewness for all 8 parameters bilaterally i.e. UL CMCT and MEP amplitudes, LL CMCT and MEP amplitudes, showed that skewness were <1. Thus, mean and standard deviations were quoted in our calculations. The Wilcoxon test was used specifically to compare paired data of S1 and S2 before and after surgery only.

Results

Controls

All controls and patients tolerated TMS well. This routine procedure in our laboratory took an average of 14 minutes to complete.

Mean and standard deviations (SDs) for UL and LL CMCTs in control subjects were 5.5 (1.11) ms and 12.26 (1.88) ms respectively. The upper limit of normal at 2SDs were 7.72 and 16.02 ms. All control subject’s upper and lower limb MEPs were easily obtained and reproducible with stimulator outputs of 70% to 80%.

For UL studies, mean amplitude (SD) was 6.54 (1.46) mV. For LL studies, mean amplitude (SD) was 1.84 (0.71) mV respectively. Hence, the lower limits of normality at 2SDs were 3.62 mV and 0.42 mV for UL and LL respectively, provided the M amplitudes were above 6 mV and 2 mV for upper (FDI) and lower limbs (AH) respectively. None of the patients studied had M amplitudes below these values.

Patients

All patients had severe cord compression and were classified into Group 3 (29 patients) and Group 4 (17 patients). The number of patients (in brackets) had 1 to 4 levels of cord compression on MRI: 1 (13), 2 (19), 3 (8) and 4 (6).

Surgery consisted of anterior or posterior decompression with cervical laminoplasty, performed by an experienced team of orthopedic surgeons. No significant intraoperative or postoperative complications were documented. There was significant difference (Wilcoxon Signed Rank test, \(P < 0.0005\)) between S1 (mean, 10.5; SD, 1.83; range, 7 to 14) and S2 (mean, 13.9; SD, 1.17; range, 12 to 16). The mean MRR was 51.5 (SD, 17.5; range, 16.7 to 85.7). None of the patients had scores of S2 < S1 after operation.

The patient’s age (Pearson’s correlation coefficient (r) = -0.012, \(P = 0.935\)), disease duration (mean, 11.4 months; range, 6 to 24 months; \(r = 0.195\); \(P = 0.194\)), MRI group (Mann-Whitney test, \(P = 0.697\)) and MRI levels of
cerebrospinal fluid (CSF) levels (Spearman’s correlation coefficient rs = 0.024, \(P = 0.873 \)) were not significantly correlated with MRR.

For CMCT and MEP amplitude analysis, data of the worse side were utilised for UL or LL. In patients with absent MEPs, CMCT was regarded as 23 ms for statistical calculations. This was derived from observation that the maximum CMCT obtained was 22.95 ms in our patient data. Absent MEP amplitude was entered as 0 mV. CMCT and MEP amplitude were regarded as abnormal if the respective values exceeded that of control subjects.

Table 3. Summary of TMS Parameters of 46 Patients

<table>
<thead>
<tr>
<th>TMS parameter</th>
<th>Mean</th>
<th>Median</th>
<th>Minimum</th>
<th>Maximum</th>
<th>25th percentile</th>
<th>75th percentile</th>
</tr>
</thead>
<tbody>
<tr>
<td>RUL CMCT</td>
<td>11.35</td>
<td>11.68</td>
<td>4.95</td>
<td>23.00</td>
<td>6.48</td>
<td>15.03</td>
</tr>
<tr>
<td>LUL CMCT</td>
<td>11.51</td>
<td>9.98</td>
<td>5.15</td>
<td>23.00</td>
<td>7.64</td>
<td>15.38</td>
</tr>
<tr>
<td>RLL CMCT</td>
<td>19.24</td>
<td>20.95</td>
<td>9.20</td>
<td>23.00</td>
<td>14.95</td>
<td>23.00</td>
</tr>
<tr>
<td>LLL CMCT</td>
<td>18.39</td>
<td>19.05</td>
<td>8.70</td>
<td>23.00</td>
<td>14.66</td>
<td>23.00</td>
</tr>
<tr>
<td>RUL MEP amplitude</td>
<td>2.69</td>
<td>2.35</td>
<td>A</td>
<td>9.40</td>
<td>1.16</td>
<td>3.93</td>
</tr>
<tr>
<td>LUL MEP amplitude</td>
<td>2.51</td>
<td>2.10</td>
<td>A</td>
<td>10.10</td>
<td>1.07</td>
<td>3.30</td>
</tr>
<tr>
<td>RLL MEP amplitude</td>
<td>0.75</td>
<td>0.60</td>
<td>A</td>
<td>2.65</td>
<td>A</td>
<td>1.26</td>
</tr>
<tr>
<td>LLL MEP amplitude</td>
<td>0.57</td>
<td>0.47</td>
<td>A</td>
<td>2.20</td>
<td>A</td>
<td>0.94</td>
</tr>
</tbody>
</table>

A: absent responses; CMCT: central motor conduction time; L: left; LL: lower limb; MEP: motor evoked potential; R: right; TMS: transcranial magnetic stimulation; UL: upper limb

All CMCT values in ms
All MEP amplitudes in mV

The UL CMCT (\(r = -0.507, P < 0.0005 \)) and LL CMCT (\(r = -0.452, P = 0.002 \)) were significantly and negatively correlated with S1. Similarly, UL MEP amplitude (\(r = 0.494, P < 0.0005 \)) and LL MEP amplitude (\(r = 0.305, P = 0.039 \)) were significantly correlated with S1.

The right UL CMCT was found to be significantly negatively correlated with right UL MEP amplitude (Pearson’s correlation coefficient \(r = -0.651, P < 0.005 \)), as was the left UL CMCT with left UL MEP amplitude (\(r = -0.593, P < 0.0005 \)).

There was significant association of MRR only with UL MEP amplitude abnormality (Mann-Whitney test, \(P = 0.018 \)) and UL CMCT abnormality (Mann-Whitney test, \(P = 0.012 \)). Using multiple stepwise linear regression analysis with MRR as dependent variable, and UL MEP abnormality and UL CMCT abnormality as independent variables, only UL CMCT abnormality was found to be the independently associated with MRR (\(P = 0.011 \)).

Further analysis with the chi-square test showed that MRR50 was significantly higher for patients with UL CMCT abnormality (patients with MRR at 50 or above vs below: 69.4% vs 20%) and UL MEP amplitude abnormality (patients with MRR at 50 or above vs. below: 66.7% vs. 14.3%). Using multiple stepwise logistic regression with MRR50 as the dependent variable and the above 2 parameters as independent variables, UL CMCT abnormality was found to be the independent predictor for MRR50 [odds ratio (OR), 9.09; confidence limits for OR, 1.65 to 49.96; \(P = 0.011 \)]. Figures 1 and 2 depict these findings graphically.

Table 2 provides a summary of patients’ clinical symptoms and signs. Table 1 shows the detailed clinical scoring scale used in this study. Tables 3, 4 and 5 show numerical data of TMS parameters before surgery, MRR with UL CMCT...
abnormality and MRR with UL MEP amplitude abnormality respectively.

Discussion

CSM is a commonly encountered condition worldwide, but its management still harbours various controversial aspects. Patients with severe cord compression justify surgery,2 but selection of patients is an important consideration. Previous studies have suggested that age and disease duration may be contributory factors to surgical outcome, but this was not evident in our findings. There were also no differences in surgical outcome in terms of MRI grading of severity or levels of cord compression. The levels of high T2 signals in the spinal cord did not correlate directly with the most significant levels of cord compromise in our previous study.11 This suggests that other factors, including oedema, gliosis, ischaemia or disturbed blood flow may play a role in addition to mechanical factors.22,23 In addition, the presence of T2 signal change in the cord may not necessarily be directly related to the degree of cord compression. A mild disc herniation may occasionally cause intramedullary T2 signal change if this was complicated mechanically by direct trauma or cord contusion against the disc.24 Significant mechanical tension has also been shown to occur within the cervical cord during neck flexion, which may be clinically relevant for patients with CSM.25 It is thus possible that our patients already had severe CSM clinically and on MRI, rendering these factors less important in influencing surgical outcome. However, significant improvement of clinical scoring at 6 months after surgery supports the use operative management in patients with severe CSM.

Table 4. Summary of UL CMCT Abnormality in 46 Patients

<table>
<thead>
<tr>
<th>UL CMCT abnormality</th>
<th>Normal</th>
<th>Abnormal</th>
</tr>
</thead>
<tbody>
<tr>
<td>No. of patients</td>
<td>10</td>
<td>36</td>
</tr>
<tr>
<td>MRR</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mean</td>
<td>39.3</td>
<td>54.8</td>
</tr>
<tr>
<td>Median</td>
<td>33.3</td>
<td>58.6</td>
</tr>
<tr>
<td>Minimum</td>
<td>20.0</td>
<td>16.7</td>
</tr>
<tr>
<td>Maximum</td>
<td>66.7</td>
<td>85.7</td>
</tr>
<tr>
<td>25th percentile</td>
<td>33.3</td>
<td>44.4</td>
</tr>
<tr>
<td>75th percentile</td>
<td>46.7</td>
<td>66.7</td>
</tr>
</tbody>
</table>

MRR: Modified Recovery Rate; UL CMCT: upper limb central motor conduction time

Table 5. Summary of UL MEP Abnormality in 46 Patients

<table>
<thead>
<tr>
<th>UL MEP amplitude abnormality</th>
<th>Normal</th>
<th>Abnormal</th>
</tr>
</thead>
<tbody>
<tr>
<td>No. of patients</td>
<td>7</td>
<td>39</td>
</tr>
<tr>
<td>MRR</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mean</td>
<td>38.4</td>
<td>53.8</td>
</tr>
<tr>
<td>Median</td>
<td>33.3</td>
<td>57.1</td>
</tr>
<tr>
<td>Minimum</td>
<td>33.3</td>
<td>16.7</td>
</tr>
<tr>
<td>Maximum</td>
<td>62.5</td>
<td>85.7</td>
</tr>
<tr>
<td>25th percentile</td>
<td>33.3</td>
<td>40.0</td>
</tr>
<tr>
<td>75th percentile</td>
<td>40.0</td>
<td>66.7</td>
</tr>
</tbody>
</table>

MRR: Modified Recovery Rate; UL MEP: upper limb central motor evoked potential
The use of TMS in the evaluation of CSM is well described. We preferred the use of MEPs over somatosensory evoked potentials as the latter was known to be less sensitive for CSM evaluation. Significant correlation of S1 with MEP amplitudes of both UL and LL, as well as negative correlation of CMCT of both UL and LL with S1, all suggest that severity of corticospinal dysfunction was directly related to clinical features. This finding further supports our choice of TMS for corticospinal functional evaluation pre-surgically.

Several underlying reasons may explain our findings. Firstly, CMCT abnormality provides direct evidence of corticospinal tract dysfunction. This parameter has also been shown to be of value in functional electrophysiological evaluation of CSM. CMCT reflects function in the fast conducting pyramidal fibres and prolonged CMCT may be secondary to desynchronisation, temporal dispersion, conduction block or even axonal degeneration in the fastest conducting fibres. Intraoperative studies have documented prolonged CMCT with only a minor degree of conduction slowing in the corticospinal tract in compressive CSM, likely contributed by impaired summation of multiple descending potentials after TMS.

Secondly, the pathogenic factors of CSM are often multiple and interactive. They include congenital spinal narrowing, spondylotic bars, discs, hypertrophic facets, disturbed blood flow and demyelination. Pathological studies suggest that the corticospinal tracts are affected early. Corticospinal fibres to the UL muscles are placed medially in the somatotopic arrangement of the cervical cord. In early CSM, lateral corticospinal tracts are first to be affected. It is thus possible that UL CMCT abnormality reflect more severe affectation of the corticospinal tracts placed relatively more medially in the cervical cord. Surgical intervention may have then effectively relieved the clinically significant compression, leading to a better outcome. This was further corroborated by our finding of negative correlation of S1 with UL CMCT, suggesting that patients who were clinically more severe were also electrophysiologically more abnormal, and subsequently benefited more from surgical decompression relative to patients with normal UL CMCT. Indeed, computer-assisted myelography has shown that clinical features in anterior cord compression were more marked, and removal of compression was followed by cord re-expansion and clinical improvement, in comparison with more lateral type compressions.

Thirdly, blood flow supply changes to the cervical cord are dynamic vascular factors that cannot be excluded. The role of ischaemia in the pathogenesis of CSM is well recognised, and rat models of cord ischaemia have demonstrated secondary demyelination and axon loss. Abnormal UL CMCT may be contributed by these vascular factors. Surgical decompression may have facilitated blood flow to the anterior cord, leading to improved clinical outcomes observed.

Fourthly, we have shown that UL CMCT and MEP amplitude were highly correlated. This is consistent with the contribution of both demyelination and axon loss to either parameter. The lower predictive value for a good outcome of UL MEP amplitude as compared to UL CMCT suggests that the former may reflect more axon loss (less favourable) than demyelination (more favourable), which may play a larger role in affecting changes in the latter parameter.

Finally, LL CMCT and MEP amplitude obtained with TMS may be more variable intrinsically and technically, rendering it difficult to show significant predictive value of surgical outcomes in comparison with UL MEP parameters. Use of more technically challenging methods, such as the triple stimulation technique, may overcome some of these obstacles and would be of interest in future studies.

Two previous studies have addressed the role of MEPs in surgical outcome of CSM. One study described 39 patients who underwent CSM surgery and found that UL MEP parameters were most sensitive in detecting CSM, but no predictive values of MEPs were demonstrated. However, the patients included all had intramedullary high signal intensity on MRI, corresponding with MRI Group 4 in our classification. This group formed the minority compared with MRI Group 3 in our study. Moreover, the presence of T2 signals did not correlate with the MRR. Thus, we feel that our study reflected a realistic clinical situation, where patients were consecutively entered for surgery, regardless of intramedullary MRI changes. In addition, this study found that only median somatosensory potential N9-20 correlated with surgical outcome, but not MEPs. It is well known that MEPs are more sensitive in detecting myelopathy than SSEPs, and it was also shown in this same study that...
arm MEPs were the most sensitive. This study also found that none of their patients had abnormal SSEPs with normal MEPs. Thus, it is possible that the lack of correlation of surgical outcome may be due to inclusion of patients with only intramedullary high T2 signals, which represent a chronic irreversible state of myelopathy. Chronic axon loss may also be contributory, as shown by our finding of the superior value of upper limb CMCT over MEP amplitude in surgical outcome correlation. Another study of 30 patients who underwent CSM surgery measured thoracolumbar spinal cord motor conduction velocity with TMS before and after intervention. Only patients with mild neurological dysfunction had improvement in conduction velocity at or after 6 months. We have chosen to utilise preoperative parameters with aims to explore their value as adjuncts in selection of surgical candidates, but further studies are in progress to address postoperative MEP findings.

This the largest series, to our knowledge, showing for the first time that UL CMCT abnormality obtained with TMS is an independent predictor of good surgical outcome in severe CSM. While TMS may not be the sole criterion, we advocate the use of this simple, rapid and safe technique as an adjunct in the preoperative selection of patients with severe cord compression resulting from cervical spondylosis. While our novel findings point to the value of CMCT as an adjunct in presurgical patient selection, larger studies would be needed to validate the techniques.

In conclusion, the value of electrophysiological techniques in cervical spondylosis has been shown not only for diagnosis and screening, but also for outcome prediction in surgical management. Future studies, such as those pertaining to outcomes in specific subgroups of intrinsic/extrinsic cord compression from various aetiologies, will be of interest to both clinicians and researchers.

Acknowledgement

The author would like to acknowledge the following for their help: S Fook-Chong, Department of Clinical Research, Singapore General Hospital; WM Yue, CT Tan, JLT Chen and SB Tan, Department of Orthopaedic Surgery, Singapore General Hospital; LL Chan, Department of Diagnostic Radiology, Singapore General Hospital; S Raman, Department of Anaesthesiology, Singapore General Hospital.

This study was supported in part by the Spinal Cord Program Grant funded by the National Medical Research Council.

REFERENCES

25. Koschorke F, Jensen HP, Terwey B. Dynamic studies of cervical spinal