EUS-FNA of the Left Adrenal Gland is Safe and Useful
Tiing Leong Ang,1 MBBS, MRCP (UK), FAMS, Tju Siang Chua,1 MBBS, MRCP (UK), FAMS, Kwong Ming Fock,1 MBBS, FRCP, FAMS, Augustine KH Tee,2 MBBS, MRCP (UK), FAMS, Eng Kiong Teo,1 MBBS, FRCP, FAMS, Kent Mancer,3 MD, Bsc (Med), FRCP

1 Division of Gastroenterology, Changi General Hospital, Singapore
2 Division of Respiratory Medicine, Changi General Hospital, Singapore
3 Laboratory Medicine Service, Changi General Hospital, Singapore

Address for Correspondence: Dr Ang Tiing Leong, Division of Gastroenterology, Changi General Hospital, 2 Simei St 3, Singapore 529889.
Email: tiing_leong_ang@cgh.com.sg

Abstract

Introduction: There are limited data on the use of endosonography-guided fine-needle aspiration (EUS-FNA) to determine the nature of left adrenal lesions. We described our experience in performing EUS-FNA of left adrenal lesions. Clinical Picture: During a 20-week period, data on consecutive patients who underwent EUS with or without EUS-FNA were prospectively captured. Patients with a left adrenal mass and who underwent EUS-FNA formed our study population. Treatment: EUS-FNA. Outcome: A total of 119 consecutive patients underwent diagnostic EUS +/- FNA, during which the left adrenal gland was routinely examined. Twelve of these patients underwent EUS as part of lung cancer staging and among these 12 lung cancer patients, 2 had left adrenal masses detected by computed tomography (CT). EUS detected left adrenal nodules in 2 other patients which were not visualised by CT. The overall prevalence of a left adrenal mass was 3.4%; in the subgroup with confirmed lung cancer, the prevalence was 33.3%. All 4 patients were male, with a mean age of 76.3 years (range, 67 to 87). The mean size of the left adrenal lesion was 30.4 mm (range, 9 to 84.8). EUS-FNA of the left adrenal lesions was performed under Doppler guidance. The mean number of needle passes was 2 (range, 1 to 4). A cellular aspirate was obtained in all patients. No procedural complications occurred. Metastatic non-small cell lung cancer was diagnosed in 2 patients, including a lesion missed on CT. For the other 2 cases, EUS-FNA revealed benign adrenal cells. Conclusions: EUS-FNA appears safe and useful for the evaluation of left adrenal masses.

Key words: Adrenal gland neoplasms, Endosonography

Introduction

The occurrence of an adrenal mass in patients with an underlying malignancy may represent distant metastases, precluding curative surgical resection of the primary malignancy. On the other hand, it may simply represent a benign adrenal adenoma with no prognostic implications. In a cohort of lung cancer patients, an isolated adrenal mass was found in 10% of cases, but only 32% of these cases were due to metastases, with the remaining 68% being benign adenomas.1 Imaging characteristics alone are unreliable for distinguishing between benign and malignant adrenal lesions. A comparison of morphologic assessment of adrenal glands using computed tomography (CT) and magnetic resonance imaging (MRI) against CT-guided tissue sampling showed that diagnostic certainty of metastases could not be obtained in 78% of cases with imaging alone.2 These observations underscore the importance of histological diagnoses in such cases.

To obtain histological diagnosis, ultrasound or CT-guided percutaneous fine-needle aspiration (FNA) is usually performed.3 However, this may be associated with an overall complication rate of 5.3%, due to the need to traverse intervening structures such as the pleura and pancreas.4 In addition, an inadequate or unsatisfactory sampling rate of 4% to 37% has been reported.5,6

Endoscopic ultrasound (EUS) is a relatively new imaging modality that allows both detailed imaging as well as FNA of the left adrenal gland. It may even detect small lesions not visible on transabdominal imaging, because of the proximity of the ultrasound transducer to the adrenal gland. EUS has been shown to be superior to transabdominal ultrasound (US) in visualising the left adrenal gland, with
a detection rate of 98% as compared to 69% for US.7 There are limited published data on the use of EUS-FNA to determine the nature of left adrenal lesions.8-11 Furthermore, it is quite clear that in the local Singapore medical community, there is limited awareness of this novel method of obtaining tissues from left adrenal lesions,3 probably due to that fact that the limited publications on this topic have been in subspecialty journals. Hence, we aimed to describe our experience in performing EUS-FNA to determine the nature of left adrenal lesions in order to increase awareness of this novel technique.

Materials and Methods

During a 20-week period from 9 January to 9 June 2006, data on consecutive patients who underwent EUS with or without EUS-FNA at the Division of Gastroenterology, Changi General Hospital were prospectively captured. Patients with a left adrenal mass and who underwent EUS-FNA formed our study population.

Diagnostic EUS was performed with a linear-array echoendoscope (GF-UC160P, Olympus, Tokyo, Japan) using the Aloka SSD 5000 ultrasound processor (Aloka Co Ltd, Tokyo, Japan) by 2 gastroenterologists experienced in performing EUS (TLA, TSC). Intravenous midazolam and fentanyl were used for conscious sedation. When a left adrenal lesion was visualised, its size, shape and echogenicity were recorded. EUS-FNA was performed using a 22-gauge needle (Echo-1-22, Cook Endoscopy, Winston-Salem, NC, USA) under Doppler guidance. On-site cytopathologic assessment was available to guide the FNA. The aspirate was smeared onto slides, air-dried and stained with Diff-Quik (American Scientific Products, McGraw Park, Ill) and reviewed by a cytotechnologist. Additional slides were fixed in 95% ethanol for formal histopathological review by the cytopathologist.

Statistical analysis of the patients’ data and clinical parameters were expressed as mean values, ranges and proportions. Informed written consent was obtained from all patients prior to all procedures.

Results

During a 20-week period from 9 January to 9 June 2006, 119 consecutive patients underwent diagnostic EUS +/-FNA, during which the left adrenal gland was routinely examined. Twelve of these patients underwent EUS as part of lung cancer staging. Among these 12 patients, 2 had left adrenal masses detected by helical abdominal CT. In addition, EUS detected left adrenal nodules in 2 other patients which were not visualised by CT. Hence the overall prevalence of a left adrenal mass was 3.4% (4/119), while in the subgroup with confirmed lung cancer, the prevalence was 33.3% (4/12). All 4 patients were male, with a mean age of 76.3 years (range, 67 to 87) (Table 1).

The mean size of the left adrenal lesion was 30.4 mm (range, 9 to 84.8). Two lesions were located in the lateral limbs of the adrenal gland as hypoechoic round nodules, 1 lesion was located in the body of the adrenal gland as a hypoechoic round nodule (Fig. 1), and the largest lesion (84.8 mm) appeared heterogeneous and completely distorted the left adrenal morphology. The morphology of the left adrenal gland was elliptical in the 3 cases in which the anatomy was not distorted.

EUS-FNA of the left adrenal lesions (Fig. 2) was performed under Doppler guidance. The mean number of needle passes was 2 (range, 1 to 4). A cellular aspirate was obtained in all patients. No procedural complications occurred. Metastatic non-small cell lung cancer (NSCLC) (Fig. 3) was diagnosed in the patient with distorted left adrenal gland structure as well as the patient with the adrenal body mass which had been missed on CT. For the other 2 patients, EUS-FNA revealed benign adrenal cells.

Discussion

The presence of an adrenal mass may denote either a benign adenoma, which may or may not be hormonally active, or a malignancy which may be a primary adrenal adenocarcinoma or a metastasis. With the widespread use of cross-sectional imaging, more adrenal lesions are being detected. The limited studies on prevalence rate showed that at autopsies, the prevalence rate of these incidental lesions was 2.3%, while the results of CT studies showed a prevalence rate of 0.5% to 2%. Most of these lesions would be non-functional adenomas, with adrenal carcinoma being relatively rare and hyper-functioning lesions comprising only 1.7% of these cases.12 In the presence of an underlying cancer, the likelihood that these adrenal lesions may be metastases increases,8,13 but up to two-thirds may
still be a benign adrenal adenoma.1 In such circumstances, obtaining histological proof becomes important in terms of guiding treatment and prognosis, even though imaging characteristics may offer some clues, which unfortunately, are not specific enough.5,9,13

The results of our study support the observations that EUS-FNA of the left adrenal gland is safe and provides a tissue diagnosis. In 2 of the patients, one of whose adrenal lesions were not detected on CT, adrenal metastases were confirmed, thus precluding curative surgery. Compared to the traditional percutaneous techniques of tissue acquisition, EUS-FNA provides several advantages. Importantly for EUS-FNA, a transgastric approach is used, which provides proximity to the left adrenal gland, so that organs that are usually traversed with a percutaneous approach, such as liver, pancreas, spleen and pleura, are avoided, significantly reducing the risk of complications. Furthermore, the needle insertion is performed under real-time ultrasound, with Doppler guidance, avoiding intervening vascular structures and reducing the risk of bleeding. In addition, EUS-FNA can also be performed in the same setting as a staging EUS, unlike CT-guided FNA, in which a separate session is required after the initial staging CT. Importantly, EUS may detect lesions not seen on US and CT,7,14-17 and facilitate the diagnosis of occult metastases, thus avoiding unnecessary non-curative surgeries.

We acknowledge that a limitation of our results is the absence of surgical histopathological correlation. This would be impossible and unethical to achieve in the context of this study. Positive cytology is generally accepted as the basis for patient management; in particular, it is not possible that the results are false positives because the needle traverses the normal gastric wall into the lesion in the left adrenal gland. The 2 lesions with benign histology may have been false negatives, on account of sampling error. However, our results did show that adrenal tissue can be reliably obtained from EUS-FNA, since there was no acellular aspirate. In addition, there are data that suggest that when an adequate tissue sample has been obtained by CT-guided biopsy of the adrenal gland and shown to be benign, it can be regarded as a true negative, with no need to repeat the biopsy.18 This should be equally applicable in the context of EUS-FNA.

In this study, we addressed only the left adrenal gland lesions. It is well recognised that EUS imaging of the right adrenal gland is suboptimal on account of anatomical reasons,7 although at times EUS-FNA may still be feasible.10 On the other hand, the percutaneous FNA of the right adrenal gland is technically less difficult than the left side, and hence the role of EUS-FNA is less crucial in this setting.19
The decision to perform FNA of the left adrenal gland depends on its impact on subsequent management and should be individualised. Should there be a need for histological diagnosis, EUS-FNA offers a minimally invasive alternative to the traditional percutaneous techniques. It is probably safer and has an excellent diagnostic yield.

REFERENCES