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Abstract

Introduction: There is interest in surveillance systems for outbreak detection at stages where
clinical presentation would still be undifferentiated. Such systems focus on detecting clusters of
syndromes in excess of baseline levels, which may indicate an outbreak. We model the detection
limits of a potential system based on primary care consults for the detection of an outbreak of
severe acute respiratory syndrome (SARS). Materials and Methods: Data from an averaged-
sized medical centre were extracted from the Patient Care Enhancement System (PACES) [the
electronic medical records system serving the Singapore Armed Forces (SAF)]. Thresholds were
set to 3 or more cases presenting with particular syndromes and a temperature reading of 238°C
(T 238). Monte Carlo simulation was used to insert simulated SARS outbreaks of various sizes
onto the background incidence of febrile cases, accounting for distribution of SARS incubation
period, delay from onset to first consult, and likelihood of presenting with T 238 to the SAF
medical centre. Results: Valid temperature data was available for 2012 out of 2305 eligible
syndromic consults (87.2%). T 238 was observed in 166 consults (8.3%). Simulated outbreaks
would peak 7 days after exposure, but, on average, signals at their peak would consist of 10.9%
of entire outbreak size. Under baseline assumptions, the system has a higher than 90% chance
of detecting an outbreak only with 20 or more cases. Conclusions: Surveillance based on clusters
of cases with T >38 helps reduce background noise in primary care data, but the major limitation

of such systems is that they are still only able to confidently detect large outbreaks.
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Introduction

There hasbeen increasing interestin building surveillance
systems capable of detecting outbreaks of infectious
diseases, at the stage where clinical presentation would still
be undifferentiated. The thrust of such systems is to detect
bothintentionally induced and naturally occurring outbreaks
in their earliest stages, and if possible, at first presentation.
These systems have been broadly referred to as syndromic
surveillance systems. However, the utility of such systems
in early outbreak detection has not been validated,* and it
has been argued that clinical recognition of cases may
precede signals from such systems.?

During the outbreak of severe acute respiratory syndrome
(SARS) in Singapore,® much emphasis was placed on fever
symptoms and body temperature readings as a screening
tool.* Studies have found that more than 80% of SARS

cases have a fever of 38°C or more (T >38) at presentation.®
Post-SARS, the Ministry of Health (MOH) essentially set
in place a syndromic surveillance system for SARS; the
system uses clusters of febrile illness in staff and inpatients
as surveillance signals.® One study has alluded to the high
degree of background noise inherent in such a system, but
notes that surveillance for SARS using febrile illness in
sick staff may still be viable, at least in the setting of a
healthcare environment.” However, that study was unable
to estimate what size of outbreak could be confidently
detected by the system.

Comparisons can be drawn between staff in healthcare
institutions and soldiers in the Singapore Armed Forces
(SAF). Both are groups of healthy workers operating
within well-defined functional units. However, the risk of
disease and the baseline rates of febrile illness would be
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differentin the setting of the SAF. Moreover, there isaneed
to know how confident one can be of detecting an outbreak
should a case of SARS be introduced into an army camp.

This paper will critically assess if aworkplace syndromic
surveillance system, based on the detection of clusters of
febrile illness in soldiers, would be viable for the purposes
of post-epidemic SARS surveillance in the SAF. We also
model the detection limits of such system.

Materials and Methods

We analysed a set of primary care data for which
temperature readings were readily available, simulated
how exposure to this virus would present to a typical army
medical centre withinthe SAF, and estimated the sensitivity
of the outbreak detection system to SARS outbreaks of
various sizes.

Data Sources

Background surveillance data for the study came from
the Patient Care Enhancement System (PACES), the
universal electronic medical records system of the SAF.
Medical consult data from an average medical centre were
extracted for the period from 1 January 2002 through 31
December 2002. Data elements included date of consult,
temperature at consultation, and diagnosis codes. Diagnoses
in the system, which are coded by the 1ICD-9 Clinical
Modification system, were mapped to disease syndromes
by the classification systemused in ESSENCE-I (Electronic
Surveillance System for the Early Notification of
Community-based Epidemics).®

Only acute consults for “respiratory”, “gastrointestinal”
and “fever” syndromes were included, as these represent
the possible range of presentations for SARS.5® This also
allowed us to be as inclusive as possible, in keeping with
the surveillance case definitions used under the MOH
system,® which did not specify any clinical presentation,
but stated only that the cases in the cluster had to have a
temperature of 38°C or more. Repeat consultations, defined
as cases who consulted again within a 7-day period, were
discarded, as the aim was to simulate outbreak detection
through cases at their first presentation.

Based on analysis of this data, we set an arbitrary
surveillance threshold that would not generate more than 1
falsealarmin 20 days (i.e., <5% of time under surveillance),
i.e., a specificity of 95%.

Model Building

Early SARS data from Tan Tock Seng Hospital (TTSH)
possibly represented extended-source outbreaks,® where
unrecognised cases of SARS in inpatients infected multiple
shifts of healthcare workers over several days. To simplify
the analysis, we assumed the simplest scenario that an
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index case of SARS was introduced into the camp, and then
taken off duty after being exposed to other camp-mates for
a day. We then used Monte Carlo simulations'® to model
how a consequent cluster of secondary cases might present,
by taking into account 4 state variables in the presentation
of each case—time indays fromexposureto onset (incubation
time, t), delay from onset to presentation (8), whether a
case had a temperature of 38°C or more (¢), and whether a
case reported sick to the SAF (o). The 4 states were
assumed to be independent of each other. Hence, for each
case, 4 random numbers between 0 and 1 were drawn (p, to
p,), and the state variables determined as follows:

Incubation Time, 7

The incubation period distribution was taken from the
Weibull function derived by Kuk and Ma* based on a
subset of 50 SARS cases from the Singapore outbreak with
well-defined exposures. Using the inverse Weibull function,
the incubation time, 1, for each simulated case was then
given by:

7= o [-In(1-p )]

where p, is the random number drawn, o = 5.8, and

B =2.59.

Delay to Presentation, &

Figure 1 was constructed using 23 cases of probable
SARS in healthcare workers who presented on 18 March
2003 and earlier, as obtained from previously unpublished
data pertaining to the earlier phases of the outbreak in
TTSH,3%1213 hefore the institution of staff fever screening
measures (which might have modified the time to
presentation). The cumulative frequency distribution in
Figure 1 was then used to derive values of d for each value
of p, drawn (e.g., for p, = 0.12, 5 = 0; for p, = 0.85,8 =3
and so forth).
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Fig. 1. Distribution of time from onset to first consult.
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Fig. 3. Proportion of days with cases having T >38.

Temperature of 38°C or more, ¢

The best available data for this were from a study
showing that only about 80% of SARS cases had T >38 at
time of admission.® ¢ takes the value 1 (i.e., febrile at
presentation) for values of p, <0.8, and 0 for values >0.8.

Reporting Sick to the SAF, o

As notall cases would seek medical care within the SAF,
we performed a sensitivity analysis for variable proportions
of 60%, 80% and 100% reporting their illness to the SAF,
using 80% as the base case. Hence, for the base case, s takes
the value 1 (i.e., reports sickness to SAF) for values of
p, <0.8, and 0 for values >0.8.

Only cases with both T >38 (¢ = 1) and which reported
sick to the SAF (¢ = 1) would contribute to surveillance
signals; such cases are henceforth referred to as “signal
cases”.

Therandomly generated cases were then stringed together
into outbreaks from size 5 to 50, in increments of 5. One
thousand outbreaks were simulated for each outbreak size
tested inthe model. The simulated outbreaks were separately
inserted into the background surveillance data for each of
the first 355 days of 2002, simulating independent exposures

NB: For base case of 80% reporting their illness to the medical centre.
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Fig. 4a. Average case presentation after exposure to SARS.
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Fig. 4b. Signal cases for 3 sample outbreaks of size 5, 20 and 50.

occurring on these days. For example, for a simulated
outbreak where exposure occurred on 1 January, a case
presenting with fever after 3 days would consult on 4
January, and be summated with the surveillance data for
that day. A surveillance signal would be generated if the
number of signal cases, combined with background cases
of febrile illness, exceeded the set threshold. Successful
detection occurred where there was at least one surveillance
signal from that insertion of the outbreak that fulfilled the
following conditions:

e The surveillance signal had to consist of at least one
outbreak case (i.e., signals arising purely from
background cases did not qualify).

e The surveillance signal had to be within 8 days of the
simulated exposure date of the outbreak.

The above was an arbitrarily chosen duration which
would allow the peak from secondary cases to present, and
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Fig. 5a. Probability of outbreak detection, incorporating delays to presentation.
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Fig. 5b. Probability of outbreak detection, ignoring delays to presentation.

which the authors felt would not too late for meaningful
outbreak control. The sensitivity of the surveillance system
was defined as the total number of outbreaks successfully
detected divided by the 355,000 simulated outbreaks
inserted (i.e., 1000 outbreaks for each of the 355 starting
points for outbreak insertion).

All simulations and data processing were executed using
random number and other functions in Microsoft Excel and
Microsoft Access.

Results

There were 7921 consults (mean of 21.7 consults per
day) for the period of observation. After discarding 315
repeat consultations, there were 2305 consults for the 3
selected syndromes. Valid temperature data were available
for 2012 consults (87.2%), and further analysis focused
only on these cases.

Figure 2 shows the pattern of syndromic consults with
and without documented fever (T >38) in the background
surveillance data. Documented fever was observed in 166
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consults (8.3%). Figure 3 shows the proportion of days
with varying numbers of consults having T >38. There
were only 11 days (3% of all days under surveillance) with
3 or more persons having documented fever over the 365-
day period. Inorder to obtain a specificity in excess of 95%,
we chose 3 or more cases as the threshold for a surveillance
signal.

Figure 4a shows the average distribution of medical
consults over time following an exposure to SARS, as
derived from a simulation of 50,000 randomly generated
cases. The number of cases presenting reaches its maximum
value between 6 and 7 days after the exposure; the peak
number of cases would, on average, comprise 16% of all
cases infected. Under the most likely parameters, the
“signal cases” at the peak would be even less, and would
comprise only about 10% of the entire outbreak size. Using
sample outbreaks of size 5, 20 and 50, Figure 4b illustrates
how such outbreaks might present. At size 5, the signal
cases are scattered over several days. At size 20 and above,
however, a distinct peak of signal cases occurs, allowing a
surveillance signal to be generated.

Figure 5a gives the probability of detection for various
outbreak sizes, with sensitivity estimates for 60%, 80% and
100% of soldiers reporting to their designated medical
centre. If 80% report their illness to the SAF, it would take
outbreak sizes of 20 or more cases to have a probability of
detecting an outbreak that exceeds 90%; 100% sensitivity
is only achieved at outbreak sizes of 30 and above. In
addition, we repeated the analysis to see if system
performance would significantly improve if we could
eliminate all delays to presentation, such as through a
routine of daily temperature taking for all soldiers (Fig. 5b).
However, even under this optimistic assumption of no
delays between onset and presentation, we were still only
able to achieve a 90% success rate of detecting outbreaks
for outbreak sizes of 20 and above.

Discussion

The above analysis is one of the first to attempt the use of
consult data from a primary care setting for the purposes of
syndromic surveillance, and to estimate possible
performance for such a system. By using body temperature
readings at consult, the system was able to screen out a
substantial amount of background noise in primary
care data. Only 8.3% of consults for the selected
syndromes in our cohort had documented fever (T >38); in
contrast, the majority of cases with SARS present with
documented fever.

However, in spite of this, the inclusion of documented
feveralone inthe case definition does not make asurveillance
system based on the detection of febrile clusters sufficiently
sensitive to small outbreaks of SARS. The present
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assessment is that 100% detection can only be achieved
with outbreak size of 30 cases or more following an
exposure limited to a single day. While super-spreader
events in SARS™4%5 could foreseeably generate such
outbreak sizes, smaller outbreaks will likely be missed.
Moreover, the above is an optimistic result, as we had made
the simplifying assumption that the exposure would be
limited to 1 day. Should the actual times of infection for
secondary cases be spread over the course of several days,
even larger outbreaks would be needed to confidently
generate a surveillance signal.

We have analysed the weaknesses of the above system in
order to understand its less than adequate performance and
identify potential solutions. Firstly, the system lacks the
clinical data with which to construct more specific case
definitions — the addition of clinical features, or the use of
some other severity index, such as repeated healthcare
consults and the need for onward referral (such as for chest
radiographs or admission to hospital), could reduce
background noise from other conditions. In addition, the
present data were analysed at the level of a medical centre,
and smaller units of analysis are yet possible in the context
of an army camp. Both these methods may allow lower
thresholds to be set. Also, as the system is sensitive to the
proportion of soldiers who present their illness to facilities
outside the SAF medical centre, mechanisms for feeding
such consult back data into the surveillance system will
maximise the potential for creating a surveillance signal. In
addition, policy measures to reduce delays in the reporting
of illness will narrow the timeframe over which anepidemic
presents, generating peaks that are more easily detected,
although we note that the gain in performance from this
aloneisnotenough to make the system sufficiently sensitive
(Fig. 5b). Lastly, we note that at its minimum, a cluster
must, by definition, include at least 2 cases over a specific
time and space. One major limitation of our system is the
reliance on a simple threshold of 3 cases or more per day.
Methods that summate signals on adjacent days, such as
CUSUM analysis,'®* may hence be useful for improving
outbreak detection by a fever cluster detection algorithm.
Hence, one limitation of this study was that the only
surveillance algorithm assessed was a simple threshold
selected on the basis observations based on the existing
data, and further modelling work on other surveillance
algorithms would be welcome.

The study had a few other limitations. Firstly, the time
period of background surveillance data spanned only a
year; this is too short a timeframe for formal assessment of
any seasonal effects. However, we note that, other than for
some clustering around May 2002, most of the 11 occa-
sionswhere consults for T>38 exceeded the threshold (Fig.
2) were scattered across the year, implying the lack of a

clear seasonal effect. Moreover, a longer time series from
the SAF PACES data (without temperature readings)
showed no definite seasonal pattern.t” As such, we decided
to assume the lack of seasonal effects when setting the
surveillance threshold for our model. We also made one
other key assumption in our model — we assumed that, for
every simulated case, the 4 state variables were independ-
ent. This assumption may be invalid, in particular, if cases
that were febrile also tended to consult earlier. The model
can be updated should more detailed clinical studies on the
timesand mode of presentation emerge. For now, however,
we note that the sensitivity analysis in Figure 5b shows that
removing all delays to presentation does not significantly
improve the performance of the surveillance system. Hence,
any correlation between time of presentation and tempera-
ture at consult is unlikely to change the conclusions of this
study.

Certainly, asingle case of SARS in present times will be
considered an outbreak. Late recognition may lead to
delayed isolation, which has been shown to have serious
consequences for onward transmission.*® There is hence a
pressing public health need to identify cases as early as
possible. However, several experts have pointed out the
challenges in making a diagnosis of SARS based on
clinicaland laboratory findingsalone.'®* The drive to develop
early detection systems based on clusters of febrile illness
is hence understandable. However, the above analysis
shows that such systems are not without major limitations
— the system assessed in this paper can only function with
confidence for very large outbreaks. We are not alone in
reporting such orders of magnitude in a syndromic
surveillance publication. Reis and MandI?® modelled the
performance of a system based in an average emergency
department, and found it to require 30 cases presenting per
day to achieve 100% sensitivity with an equivalent
specificity. Unfortunately, detection limits of the order of
those in Reis and Mandl’s paper and ours are of little
practical use for most emerging infectious diseases.

However, syndromic surveillance systems like the one
assessed here may still be useful in 2 circumstances. Firstly,
in a successful release of a bioterrorism agent, the initial
number of presenting cases may be much higher; in such a
situation, it is speculated that a syndromic surveillance
system may provide firstwarning. Secondly, a retrospective
analysis of historical outbreaks found significant delays
between the onset of cases and the reporting of the incident.
In a review of outbreak investigations, it was found that
outbreak reporting was delayed for 14 to 26 days in 3 out
of 6 incidents where bioterrorism was considered.?! One
purpose of syndromic surveillance may hence be to act as
a safeguard to ensure timely detection in the event of
multiple system failures.
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Conclusions

Syndromic surveillance systems remain unvalidated in
their usefulness. Our assessment of one potential system,
based on clinical syndromes and documented fever at
consult, shows that the system is only able to detect large
outbreaks with a high degree of certainty. This limitation
must be emphasized both to public health surveillance
teams and policy makers, and further refinements and
research are needed before such systems can be implemented
with confidence.
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