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Introduction
Of all the ligaments of the knee joint, the anterior cruciate

ligament (ACL) is the most frequently injured despite its
structural proficiency and its ability to adjust the stiffness
of the knee muscles.1 ACL injuries typically occur during
activities that involve abrupt deceleration or change of
direction when the foot planted.2-6 In the general population,
the incidence of ACL rupture is estimated at between 2.47

to 3.48 per 10,000. In Singapore, although incidence
estimates are unavailable, some authors have observed a
rising trend of ACL injuries in Singaporean females.9

Rupture of the ACL increases knee joint laxity, leading
to episodes of anterior and rotary instability, quadriceps
atrophy, degeneration of the articular surfaces, meniscal
damage, osteoarthritis and recurrent pain.10-14 In order to
alleviate these and other symptoms associated with
progressive knee dysfunction, 2 main treatment options are
available following an ACL injury – conservative
rehabilitation or reconstructive surgery. Patients who are
prepared to decrease their level of sporting activities may
be advised to undergo conservative rehabilitation.15,16

However, patients who desire to return to high level sporting
activities are usually advised to undergo ACL reconstruction
(ACLR).14,17-19 Given that surgical reconstruction is the
preferred method of treatment for a ruptured ACL,20-22 the
associated costs are substantial. Indeed, in the United
States, the annual expenditure associated with ACLR alone
has been estimated at over $2 billion,23 and the financial
burden of ACL injuries becomes conceivably formidable
when one considers the long-term costs associated with
subsequent osteoarthritis development.24

Following an ACL injury or ACLR, full recovery of
quadriceps and hamstrings muscle strength (torque
generating capacity) is not always achieved.25,26 In assessing
and monitoring these strength deficits, many clinicians and
researchers have implemented isokinetic dynamometry
protocols. However, in both the applied literature and in
discussions with colleagues, we have observed considerable
reservation about the use of isokinetic dynamometry given
its “non-functional” nature. These reservations usually
take the position that single-joint measures of muscle
performance in a non-weight-bearing (usually seated)
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Abstract
The use of isokinetic dynamometry has often been criticised based on the face-validity

argument that isokinetic movements poorly resemble the everyday multi-segmented, dynamic
activities of human movements. In the anterior cruciate ligament (ACL) reconstruction or
deficiency population where muscle deficits are ubiquitous, this review paper has made a case for
using isokinetic dynamometry to isolate and quantify these deficits in a safe and controlled
manner. More importantly, the usefulness of isokinetic dynamometry, as applied in individuals
with ACL reconstruction or deficiency, is attested by its established known-group and conver-
gent validity. Known-group validity is demonstrated by the extent to which a given isokinetic
measure is able to identify individuals who could and could not resume pre-morbid athletic or
strenuous activities with minimal functional limitations following an ACL injury. Convergent
validity is demonstrated by the extent to which a given isokinetic measure closely associates with
self-report measures of knee function in individuals with ACL reconstruction. A basic under-
standing of the measurement properties of isokinetic dynamometry will guide the clinicians in
providing reasoned interventions and advancing the clinical care of their clients.
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position poorly resemble the everyday multi-segmented,
dynamic activities of human movements. In this paper, the
authors review the fundamental concepts of isokinetic
dynamometry and its psychometric properties, as applied
to patients with ACL-deficiency (ACLD) and ACLR.
Specifically, we suggest that the usefulness of isokinetic
dynamometry is contingent upon (1) its ability to quantify
muscle deficits in a safe and controlled manner; (2) the
extent to which 2 or more distinct groups of individuals
with ACLD are distinguished by the isokinetic measurement
(i.e., known-group validity); and (3) its strength of
relationships with isokinetic measurements and established
self-report measures of knee function in patients with
ACLR (convergent validity). We hold the premise that
healthcare practitioners who understand the measurement
properties of isokinetic dynamometry, as applied specifically
in ACLR/ACLD populations, are better prepared to provide
reasoned interventions and advance the clinical care of
their patients.

Isokinetic Dynamometry: The Fundamentals
An isokinetic dynamometer may be used to measure 3

types of muscular contractions – isometric, eccentric
isokinetic, and concentric isokinetic contractions. During
an isometric contraction, the resistive dynamometer torque
equals the muscular torque such that no joint movement
occurs and the whole muscle length remains constant.27

During a concentric isokinetic contraction, the active
muscles shorten; during an eccentric isokinetic contraction,
the active muscles lengthen. In both types of contraction,
the knee joint moves at a constant angular velocity.27

In keeping with Newton’s first law of motion (i.e., an
object will stay at rest or continue at a constant velocity
unless acted upon by an external unbalanced force.),
constant-velocity (including 00/s) movement is achieved
by matching the resistive dynamometer torque against the
muscular torque produced by the individual. Specifically,
an isokinetic dynamometer comprises a lever arm that is
controlled by an electronic servomotor. This servomotor
allows the clinician to preset an angular velocity, and the
moveable lever arm is attached to the individual’s limb.
When the individual attempts to accelerate the limb (and
lever arm) beyond the preset velocity, the machine provides
an accommodating resistive torque so that constant-velocity
limb movements ensue, and thus an exact match between
applied and resistive torque.28 It must be emphasised that
during a concentric isokinetic test, constant-velocity limb
movements occur only when the individual is able to move
the limb fast enough to the preset angular velocity; hence,
initial limb acceleration must occur at the beginning of the
test movement. In individuals who are unable to accelerate
their limbs to the preset velocity (especially at high preset
velocities), the clinician must realise that ensuing torque

data are collected when the limb is accelerating or
decelerating, and are thus associated with inertial effects
(Fig. 1).29,30

Isokinetic Measurements
Peak Measurements

Clinicians can derive several measurements from an
isokinetic knee test, amongst which peak torque is the most
commonly used measure. Peak torque is simply the highest
torque achieved during the test movement.31 Although the
definition of peak torque is intuitively obvious, its construct
validity is less certain. Specifically, peak torque is not a
measurement of maximal muscular tension; rather, it
represents a point in the test movement where length-
tension factors and variations in lever arm combine in an
optimal fashion.32-34

Angle-specific Measurements
Given that the torque-angle profile of an isokinetic

contraction is a function of the interaction between the
moment arm and length of a muscle,35 some authors36-40

have favoured isokinetic measurements produced at specific
knee angle(s) (e.g., angle-specific torque). Theoretically,
regardless of the preset angular velocity,31 angle-specific
measurements represent measurements obtained at a
constant muscle length and moment arm,41,42 thereby
allowing equitable comparisons between and within
individuals. However, because angle-specific measurements
are instantaneous measures obtained at fixed angles, some
evidence exists to suggest that these measurements are less
reliable than peak measurements,43 particularly at the

Fig. 1. During concentric, isokinetic knee extension, the net knee-extensor
torque (τmuscle) is given by the following formula:
τmuscle = τdynamometer + τ(shank and foot) + I (shank and foot)α 
Where:
τmuscle = net knee-extensor torque
τdynamometer = resistive dynamometer torque 
τ(shank and foot) = gravitational torque produced by shank and foot
I (shank and foot) = moment of inertia of shank and foot
α = angular acceleration of the limb-lever arm system. During constant-
velocity movement, α = 00/s2
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extremes of the test movement44 where inertial effects30

(e.g., torque overshoot45) may contribute additional sources
of variability. Torque overshoot refers to a spike on the
isokinetic torque curve that is produced by the
dynamometer’s attempt to decelerate an over-speeding
limb-lever arm system during the free acceleration period.45

Therefore, despite the theoretical advantage offered by
angle-specific measurements, the inferential capacity of
these measurements may be hampered by reliability
problems. Also, to our knowledge, studies have yet to
demonstrate convincingly that angle-specific measurements
possess greater inferential capacity than peak measurements
in patients with ACLR or ACLD.

“Average” Measurements
In contrast to instantaneous measures, another class of

isokinetic measures that can be obtained from the isokinetic
dynamometer is “average” measures31 – average torque,
work, and average power. To obtain valid “average”
measures, data can be extracted from a standardised and
central portion of the test movement46 to avoid the problems
of torque overshoot,45 and the inertial effects30 associated
with limb acceleration and deceleration. Based on the
assumption that constant velocity limb movements occur
within the central portion (“window”) of a movement, it is
not often realised that for a given angular velocity, the
resultant average torque, work, or power measures bear a
direct quantitative association with one another (i.e., average
power = average torque X angular velocity; work = average
torque X angular displacement described within a
“window”) such that no one measure possesses a greater
inferential capacity than the other 2 measures.

Other Measures
Another way of analysing the torque-time curve of an

isokinetic contraction involves the use of frequency
analysis.47-50 For example, Tsepis et al48 applied this analysis
to examine the morphology of the torque-time curves
produced by 30 male individuals with unilateral ACLD.
Specifically, each torque-time curve was transformed into
a frequency-domain signal (power spectrum) via a Fast
Fourier Transformation. On the basis of this analysis,
Tsepis et al48 found that the frequency content of the
isokinetic knee torque was higher in the ACLD limb than
in the non-involved limb. Given that the smoothness of
torque generation is associated with force control,51 the
authors postulated that the higher oscillations produced by
the involved knee musculature were indicative of an unstable
mechanical output of the ACLD knee. Although the
application of frequency analysis in isokinetic dynamometry
is still in its infancy, the underpinning rationale appears
valid and logical.

Test-retest Reliability

Specific to the ACLR population, Brosky et al52

investigated the test-retest reliability of isokinetic
measurements obtained from 15 male subjects with
unilateral ACLR. Each subject underwent isokinetic testing
on 4 separate occasions – initial session, 1 day, 1 week, and
2 weeks later. The isokinetic measurements of interest
were peak quadriceps and hamstrings torque tested
concentrically at 600/s and at 3600/s. The authors reported
that the intraclass correlation coefficients, an index of
relative reliability, for the aforementioned isokinetic
measurements ranged from 0.81 to 0.97. An intraclass
coefficient indicates the ability of a given measure to
distinguish between individuals,53 and an intraclass
coefficient of 0.81 indicates that error contributes 19% of
the observed-score (total) variance.54 When quadriceps
torque values, obtained concentrically at 600/s, were
expressed as a percentage of the uninvolved quadriceps
torque, Ross et al55 reported that the intraclass coefficient
was 0.95 in individuals with ACLR, while the standard
error of measurement was 3.8%. Accordingly, the
interpretation is that the quadriceps index must increase by
at least 9% (i.e., the minimum detectable change at a 90%
confidence level) before the clinician can be reasonably
confident that the patient has truly improved. It must be
remembered that relative reliability indices do not express
error in the units of the original measurement; absolute
reliability indices (e.g., standard error of measurement)
do,56 and they provide a threshold beyond which a
statistically significant change can be said to have occurred
in a repeated measure.

Reviewing the literature, we were unable to locate
previous reports providing estimates of absolute reliability
obtained specifically from patients with ACLD. In knee-
healthy, young individuals, Sole and colleagues57

recommended that a change of 15% to 20% from the
baseline (initial) concentric knee flexion/extension peak
torque measurement was necessary for the user to be
reasonably confident that a statistically significant change
had occurred. Also, one of the authors of this paper (YHP)
reported on 11 knee-healthy, recreationally active
Singaporean females and found that an increase of 15%
from the baseline concentric quadriceps peak torque
measurement (measured at 600/s) was necessary before the
user could be confident (90% confidence level) that a true
change in strength had occurred.58 However, given that
measurement reliability is population, tester, and
measurement protocol specific,59 we urge users of isokinetic
dynamometry to conduct their own reliability studies to
derive customised estimates of absolute reliability.
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Muscle Deficits in ACLR and ACLD Populations
Mechanisms of Quadriceps Deficits: ACLD Population

Quadriceps deficits are ubiquitous in the ACLD
population, and the aetiology is multifactorial. First, reflex
inhibition of the lower motor neurons, from pain or knee
effusion,60-62 can lead to quadriceps deficits. Known as
arthrogenic muscle inhibition, full voluntary quadriceps
activation is thought to be prevented in the ACLD limb in
order to protect knee integrity.63-66 Furthermore, a loss of
afferent feedback from the ACL can contribute to gamma
loop dysfunction, resulting in quadriceps inhibition not
only in the involved side,67-70 but also in the uninvolved
quadriceps.71,72 Indeed, Chmielewski et al72 recently reported
on 100 consecutive patients with acute ACLD (with knee
range-of-motion restored and knee effusion resolved) and
found that the incidence of bilateral quadriceps activation
failure was 21%. Regardless of the precise mechanism, the
clinical implication is that if reflex inhibition constitutes a
partial cause of quadriceps deficits, it follows that traditional
volitional exercises would be unable to remedy this strength
impairment. Second, immobilisation in the acute phase
following an ACL injury, inadequate training, or general
muscle disuse have been shown to cause significant atrophy
of Type I73-76 and Type II77 muscle fibres of the quadriceps.

Mechanisms of Quadriceps Deficits: ACLR Population
Several mechanisms underlying quadriceps weakness in

patients with ACLD are also applicable to patients with
ACLR. For example, residual instability of the knee could
result in altered feedback from mechanoreceptors located
in the soft tissues of the knee joint.78,79 As have occurred in
patients with ACLD, patients with ACLR may also
demonstrate arthrogenic quadriceps inhibition in order to
minimise anterior tibial translation and ACL-graft strain.66,80

Given that ACL mechanoreceptors play an important role
in enhancing the activity of gamma motor neurons,81-85

gamma loop function could be attenuated in the quadriceps
because the mechanoreceptors in the ACL were not
surgically reconstructed.86-88 Furthermore, relative inactivity
and ineffective strengthening exercises following surgery
may also be associated with Type II muscle fibre atrophy74,89-

92 observed in patients with ACLR.
In patients with ACLR, graft procurement can produce

quadriceps deficits. For example, patellar tendon shortening
following graft harvest93 may alter the length-tension
relationship of the extensors mechanism.66 As well,
harvesting the patellar tendon may cause patellofemoral
joint symptoms, such as pain and effusion.94 Potentially,
these symptoms can produce inhibition by altering the
neural control of the quadriceps84,95

Mechanisms of Hamstring Deficits: ACLD Population
In contrast to the quadriceps, the hamstrings are less

susceptible to strength deficits following an ACL injury.
Indeed, bilateral and matched control-group contrasts in
patients with chronic ACLD have typically revealed non-
significant deficits in hamstrings strength ranging from
6.3% to 12.0%.6,25,39,96-108 Negligible hamstrings deficits
following an ACL injury are thought to be due to the bi-
arthrodial nature of 3 of the 4 hamstrings components such
that even if knee mobility is impaired following an ACL
injury, hip extension continues to act as a stimulus for the
hamstrings.102,109-111 As well, a greater emphasis on
maximising hamstring strength during rehabilitation may
contribute to the negligible deficits found in the ACLD
limb.102,106

Mechanisms of Hamstring Dysfunction: ACLR Population
Current rehabilitation protocols emphasise early and

aggressive hamstring training following an ACLR20,112-115

on the basis that hamstring contraction can produce posterior
tibial translation to reduce the strain on the maturing ACL
substitute.109,114,116,117 Thus, current trends in rehabilitation,
together with the bi-arthrodial nature of the hamstring
components, may explain why most studies26,118-120 have
found negligible hamstring deficits in patients with ACLR
using the bone-patellar tendon-bone autograft. However,
in patients with ACLR using the semitendinosus-gracilis
tendon autograft, recovery of hamstring strength is of some
concern given that the semitendinosus tendon (medial
hamstring) is sacrificed during the procedure. Whilst some
investigators121-126 have generally found non-significant
hamstring deficits between the operated versus the non-
operated side in the postoperative period, studies that have
tested the hamstring at greater degrees of knee flexion127-129

(>700) or the tibial internal-rotators130-132 (with the intent to
bias the medial hamstring) have revealed substantial strength
deficits. Collectively, although hamstring-strength recovery
may be explained by the functional regeneration of the
tendons123 or by the compensatory hypertrophy of other
undisturbed hamstring muscles (e.g., biceps femoris),133

the non-uniform healing patterns by which the hamstring
tendons regain their peripheral attachments134,135 may
partially account for the hamstring deficits seen in some
patients.

Isokinetic Dynamometry Quantifies Muscle Deficits in a
Safe and Controlled Manner

Specific to the ACLR/D population, the usefulness of
isokinetic dynamometry in quantifying muscle weakness is
reinforced by 3 lines of arguments. First, based on what is
known about the torque-velocity relationship for concentric
knee muscles actions,136 there is irony in that it is precisely
the isovelocity limb movements – a common criticism of
isokinetic dynamometry – which allow the clinician to
make standardised inter- and intra-patient comparisons of
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muscle deficits. Also, because the dynamometer provides
an accommodating resistive torque, the isokinetic test can
be safely interrupted at any instant. Second, many
researchers137-141 have favoured isometric testing (preset
angular velocity of 00/s), especially in the initial phase of
rehabilitation when functional testing such as vertical jump
testing is not possible, presumably because isometric testing
allows the knee to be tested safely at one angle, usually with
the knee flexed at 600, such that any quadriceps contractions
produce low to no ACL strain.142

Third, the open kinetic chain nature of isokinetic testing
deserves specific comments regarding its ability to isolate
the muscle of interest. Closed kinetic chain movements
(e.g., squats and jumps) are those in which the distal
segment of the joint meets considerable resistance.143

Because these movements are typically weight bearing
movements, motion in one joint simultaneously produces
motion in other joints of the extremity in a predictable
fashion.144 In contrast, open kinetic chain movements (e.g.,
seated knee extension) are single-joint movements in which
the distal segment is free to move. Because open kinetic
chain movements are typically non-weight bearing
movements, one can expect open kinetic chain isokinetic
testing to isolate the knee musculature because there is less
chance of substitution by other muscle groups.145 Indeed,
considerable evidence146-152 exists to suggest that quadriceps
strength deficits inherent in a patient can be masked during
“functional” testing in a close kinetic chain fashion (e.g.,
squats and vertical jumps). For example, using a motion
analysis and force platform system, Salem and colleagues146

studied the bilateral lower-extremity kinematics and kinetics
displayed by 8 patients after ACLR during a squatting task.
The authors found that in the reconstructed limb, patients
increased the muscular effort at the hip to overcome the
resistance during the squatting task; in the non-operated
limb, muscular effort was equally distributed between the
hip and knee extensors. Again, using a motion analysis and
force platform system, Ernst and colleagues149 studied 20
patients with ACLR and 20 matched subjects performing
a single-leg vertical jump. The authors found that although
the knee extension moment of the ACL-reconstructed
extremity was lower than that of the uninjured and matched
extremities during the take-off phase of the vertical jump
task, the hip or ankle extensors were capable of
compensating for the inherent knee extension moment
deficit. In a recent study, Tagesson et al147 examined the
effectiveness of including open kinetic chain quadriceps
strengthening exercises in a rehabilitation programme for
patients with ACLD. The authors found that after 4 months
of rehabilitation, patients who received the supplementary
open kinetic chain training had greater strength gains than
those in the control group. Taken together, the afore-

mentioned observations, along with those from other
clinical150,151 and biomechanical148,152 studies, support the
contention that it is precisely the open kinetic chain nature
of isokinetic testing– a common criticism of isokinetic
dynamometry – which allows a clinician to localise and
quantify specific muscle deficits.

Isokinetic Dynamometry: Known Group-validity
In measurement theory, known group validity refers to

the ability of a measure to distinguish distinct groups of
patients who are known to possess different levels of the
attribute of interest.153 Following an ACL injury, it has been
reported that a subgroup of patients has minimal
impairments,7,154 and the resumption of pre-morbid athletic
or strenuous activities with few functional limitations is the
hallmark characteristics of these copers with ACLD.155-157

Importantly, Fitzgerald et al158 proposed that a failure of
previous researchers to include only potential ACLD copers
in their studies might partially explain the current conflicting
findings with regard to the efficacy of conservative ACL
rehabilitation.159-161 Specifically, Fitzgerald et al158 suggested
that by including individuals who are unable to cope with
their ACL injuries in clinical trials, the efficacy of any
conservative rehabilitation programme would be diminished
via a “wash-out” effect. From a clinical perspective, the
ability to better identify rehabilitation candidates and not
refer ACLD non-copers to a gratuitous trial of non-operative
management would potentially translate to considerable
time and cost savings.

Against this background, researchers have attempted to
develop screening tests to identify potential ACLD
copers.162,163 It is not the intent of this review to detail these
screening tests, but Fitzgerald et al163 have provided an
excellent overview of the decision-making scheme
developed by the University of Delaware. According to
Fitzgerald et al,163 a patient with ACLD is classified as
being a potential coper if the following 4 criteria are met:
(1) global rating of knee function of 60% or higher; (2) no
more than one episode of giving-way at the knee since the
incident injury (excluding the actual ACL injury) to the
time of the screening examination; (3) Activities of Daily
Living Scale164 score (a self-report measure of knee function)
of 80% or higher; and (4) timed hop test165 of 80% or higher
(measurements are obtained on both extremities so that test
performance on the injured limb can be expressed as a
percentage of test performance on the opposite limb).
Although isokinetic measures are not included in the test
battery, it is noteworthy that one of the prerequisites for
performing the timed hop tests is the ability to generate
quadriceps isometric force (as measured using an isokinetic
dynamometer) for the involved limb at no less than 80% of
the uninvolved quadriceps force.158 Indeed, known-group
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validity of the isokinetic measure is supported by the
findings of a greater level of quadriceps femoris muscle
strength in ACLD copers than in non-copers.157,166

Furthermore, using magnetic resonance imaging,
Williams et al167 found that ACLD non-copers displayed
significantly greater quadriceps atrophy than  copers, which
attested to quadriceps muscle function as a critical factor in
the differential response to an ACL injury.

Association Between Isokinetic Measurements and Self-
report Measures of Knee Function

In assessing knee function in patients with ACLR, it is
recognised that self-report approaches are well accepted in
ACL research (Table 1) as they are a feasible and cost-
effective means of gathering data on large numbers of
individuals. Further, Guccione and colleagues170 proposed
that self-assessments are most consistent with the tenets of

Table 1. Relationships Between Self-report Measures of Knee Function and Isokinetic Variables in Patients With ACLR

Reference ACLR patients Mean time since Knee rating system Isokinetic variables and Pearson r-values
ACLR

Harter et al 32 males 48 ± 21 months Knee Function Rating Form Angular velocity = 1200/s
(1988)37 19 females PT autograft = 61%  Angle specific (45o) quadriceps: ns (Pearson r value not given) 

Mean age = STG autograft = 39% Angle specific (45o) hamstrings: ns (Pearson r value not given)
24 years

Wilk et al 34 males 26 weeks Cincinnati Knee Angular velocity = 1800/s
(1994)148 16 females Graft used: Rating System Peak quadriceps torque: r = 0.71* 

Mean age = unknown Peak hamstrings torque: r = 0.25 

Angular velocity = 3000/s
Peak quadriceps torque: r = 0.67* 
Peak hamstrings torque: r = 0.30

Angular velocity = 4500/s 

Peak quadriceps torque: r = 0.13 
Peak hamstrings torque: r = 0.21

Seto et al 19 males 5 years Self-report Angular velocity = 1200/s 

(1988)117 6 females Functional Peak quadriceps torque: r = 0.74* 
Mean age = Activity Peak hamstrings torque: r = 0.80*

Angular velocity = 2400/s 

Peak quadriceps torque: r = 0.79*
Peak hamstrings torque: r = 0.75*

Holm et al 85 males Participants tested Cincinnati Knee Angular velocity = 600/s
(2000)168 66 females at 6, 12 and Rating System Total work produced in 5 repetitions, expressed as a percentage

Mean age = 24 months post- of that produced by the uninvolved side
20 ± 4 years ACLR Total work produced by quadriceps: r = 0.34* to 0.39* 

PT autograft Total work produced by hamstrings: r = 0.17* to 0.31*

Ross et al 36 males 31 ± 16 months Knee Outcome Survey, Angular velocity = 600/s 

(2002)55 14 females PT autograft Sports Activity Scale Peak quadriceps torque expressed as a percentage of the
Mean age = (14% had revision and Activities of uninvolved quadriceps torque: r = 0.29*
21 ± 1 years ACLR using Daily Living Scale164

STG autograft)

Bryant et al 9 males 8 ± 2 months Cincinnati Knee Angular velocity = 1800/s 

(2008)90 4 females PT autograft Rating System169 Quadriceps torque data were averaged over 10° intervals,
Mean age = between 80°–70°, 70°–60°, 60°–50°, 50°–40°, 40°–30°,
33 ± 13 years 30°–20° and 20°–10° of knee flexion.

Average quadriceps torque was next expressed as a percentage
of the uninvolved average quadriceps torque
Average quadriceps torque from 800 to 700: r = 0.40
Average quadriceps torque from 700 to 600: r = 0.58*
Average quadriceps torque from 600 to 500: r = 0.48*
Average quadriceps torque from 500 to 400: r = 0.53*
Average quadriceps torque from 400 to 300: r = 0.56*
Average quadriceps torque from 300 to 200: r = 0.59*
Average quadriceps torque from 200 to 100: r = 0.45

ACLR: anterior cruciate ligament reconstruction; ns: not significant; PT: patellar-tendon; STG: semitendinosus-gracilis (STG) 
*P <0.05

31±7 years  Questionnaire

25 years
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evidence-based practice171 to the extent that the individual’s
judgment about his/her level of function (patient’s values)
is conjoined to best clinical practice and clinically relevant
research. For this reason, we have elected to focus our
discussion on the association between isokinetic measures
and self-report measures of knee function (Table 1). In
appraising the magnitude of the correlation between a
given isokinetic variable and a self-report measure, it is
important to realise that the latter examines patient-perceived
levels of function during activities of daily living, work, or
sporting activities. Given the multifactorial nature of one’s
activity level or athletic performance, it is unreasonable to
expect isokinetic measures from a single muscle group to
wield a strong influence on the self-report measures.
Accordingly, we believe that a Pearson product moment
correlation (r-value) of at least 0.40 is adequate to provide
some evidence of convergent validity for a given isokinetic
variable. From Table 1, we note that correlations between
the various isokinetic quadriceps variables and self-report
measures have ranged from approximately 0.13 to 0.79;
between the isokinetic hamstrings variables and self-report
measures, 0.17 to 0.80.

An explanation of the wide disparity in correlation
values found in previous studies is difficult and requires
speculation. In studies148 where high r-values (r >0.7) were
found, we believe it is important to caveat the results
because these investigators have pooled males and females
or individuals with wide variations in force deficits.
Consequently, a high level of heterogeneity in performance
was created, ostensibly leading to inflated r-values.
Conversely, in the study by Ross et al where most (~80%)
participants had isokinetic deficits less than 20%, we
believe that the resultant restriction-in-range effect may
explain the lower r-values found.

In view of the limitations of previous studies, one of the
authors of this study (ALB)90 recently investigated the
association between isokinetic quadriceps variables and
ratings on the Cincinnati Knee Rating System169 in 13
participants with unilateral ACLR. To enhance group
homogeneity, ACLRs were performed with the bone patellar
tendon bone autograft in all participants. For each
participant, average quadriceps torque was computed over
fixed 10° intervals from 80 to 10° knee flexion. Accordingly,
average torque data were extracted between knee flexion
angles of 80°–70°, 70°–60°, 60°–50°, 50°–40°, 40°–30°,
30°–20° and 20°–10°. Our results indicate that average
quadriceps torque values obtained in the central portion of
the test movement (i.e., 700 to 100 of knee flexion) were
closely associated with the Cincinnati ratings (r-values
ranged from 0.48 to 0.59). Overall, we believe we can state
with some confidence that our results, along with those
from previous studies (Table 1), have provided prima facie

evidence for the convergent validity of isokinetic knee
measurements in patients with ACLR.

Summary and Conclusion
We do not dispute the face-validity argument that

isokinetic movements resemble poorly the everyday multi-
segmented, dynamic activities of human movements. Nor
do we dispute the argument that the correlation between
isokinetic measurements and self-report athletic
performance may be moderate at best (i.e., r <0.70),
especially in the knee-healthy population. However, we
believe it is unreasonable to expect isokinetic measures
from single muscle group to strongly correlate with physical
performance, and Wrigley172 has provided a thoughtful
review of the measurement properties of isokinetic measures
in the healthy athletic population. Regardless, in patients
with ACLR or ACLD where muscle deficits are ubiquitous,
we have made a case for using isokinetic dynamometry to
isolate and quantify these deficits in a safe and controlled
manner. More importantly, the usefulness of isokinetic
dynamometry, as applied in the ACLR/D population, is
attested by its established known-group and convergent
validity. Finally, we urge clinicians to revert to fundamental
physics laws when interpreting the plethora of isokinetic
variables, and to give careful consideration to inertial (for
non-isometric contractions) and gravitational effects when
interpreting the test results.
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