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Abstract
Introduction: Decreased insulin action (insulin resistance) is crucial in the pathogenesis 

of type 2 diabetes. Decreased insulin action can even be found in normoglycaemic patients, 
and they still bear increased risks for cardiovascular disease. In this study, we built models 
using data from metabolic syndrome (Mets) components and the oral glucose tolerance 
test (OGTT) to detect insulin resistance in subjects with normal glucose tolerance (NGT). 
Materials and Methods: In total, 292 participants with NGT were enrolled. Both an insulin 
suppression test (IST) and a 75-g OGTT were administered. The steady-state plasma glucose 
(SSPG) level derived from the IST was the measurement of insulin action. Participants 
in the highest tertile were defi ned as insulin-resistant. Five models were built: (i) Model 
0: body mass index (BMI); (ii) Model 1: BMI, systolic and diastolic blood pressure, 
triglyceride; (iii) Model 2: Model 1 + fasting plasma insulin (FPI); (iv) Model 3: Model 2 
+ plasma glucose level at 120 minutes of the OGTT; and (v) Model 4: Model 3 + plasma 
insulin level at 120 min of the OGTT. Results: The area under the receiver operating 
characteristic curve (aROC curve) was observed to determine the predictive power of 
these models. BMI demonstrated the greatest aROC curve (71.6%) of Mets components. 
The aROC curves of Models 2, 3, and 4 were all substantially greater than that of BMI 
(77.1%, 80.1%, and 85.1%, respectively). Conclusion: A prediction equation using Mets 
components and FPI can be used to predict insulin resistance in a Chinese population with 
NGT. Further research is required to test the utility of the equation in other populations 
and its prediction of cardiovascular disease or diabetes mellitus.
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Introduction
Currently, type 2 diabetes is a leading cause of death in 

Taiwan, as well as in many other countries.1 It places a 
tremendous burden not only on patients themselves but also 
on patients’ families and society. Although which process 
occurs fi rst remains controversial, both insulin resistance 
and impaired insulin secretion are the 2 principal causes 
of type 2 diabetes.2,3 According to the Insulin Resistance 
Atherosclerosis Study, approximately 85.7% to 93.2% 

of type 2 diabetes patients have insulin resistance.4 In 
addition, Reaven et al5 found that approximately 30% 
of normoglycaemic patients can be classifi ed as insulin-
resistant.6 Insulin-resistant patients were proven to have a 
higher cardiovascular risk than those without.7 Therefore, it 
is crucial to identify insulin resistance in normoglycaemic 
patients. Preventive interventions, such as lifestyle 
modifi cation, can be suggested to this apparently healthy 
cohort.
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Insulin resistance and insulin sensitivity are conceptually 
reciprocal. In other words, a high level of insulin resistance 
corresponds to a low level of insulin sensitivity. Numerous 
methods have been developed for measuring insulin 
action (insulin-medicated glucose disposal). Among these 
methods, the glucose clamp technique is considered the 
“gold standard” for measuring insulin sensitivity, but 
because it is both time- and labour-consuming, it is not 
suitable for most hospitals and research institutes.8 Another 
sophisticated method, the insulin suppression test (IST), 
provides an accurate measurement of insulin resistance 
found to be closely correlated with the insulin sensitivity 
derived from the clamp technique.9 Because the oral glucose 
tolerance test (OGTT) is a simple method, it is a widely 
used test. Many surrogate tests used for measuring insulin 
action were derived from the OGTT, such as the Matsuda 
and Stumvoll Index.10,11 The homeostasis model assessment 
of insulin resistance (HOMA-IR) is the easiest method to 
conduct. However, it is less accurate than the mentioned 
tests, and can only be used for large cohorts.12

Metabolic syndrome (Mets), the clustering of glucose 
intolerance, hypertension, obesity, and dyslipdaemia, 
was found to be associated with insulin resistance and 
an increased risk of cardiovascular disease.13 Moreover, 
all Mets components have been found to be associated 
with insulin resistance.14-18 Combining these biological 
variables to identify insulin-resistant people has been 
assessed by several studies.19,20 For instance, Stern et al 
used routine clinical measurements to build a tree model 
that predicted insulin resistance with 78.7% sensitivity and 
79.6% specifi city in non-diabetic participants.19 In addition, 
McAuley et al developed an equation for the same purpose.20

It is crucial to identify insulin-resistant normoglycaemic 
patients. Both Mets components and data from the OGTT 
were used in predictive models for this purpose. However, 
no known study has considered OGTT data, which could 
further increase the accuracy of predictive models. 

In this study, we developed a simple but accurate 
multivariable risk score model to predict insulin resistance 
in patients with normal glucose tolerance (NGT) using both 
Mets components and data from the OGTT. 

Materials and methods
Subjects

A total of 513 participants were enrolled and received the 
standard 75-g OGTT in Cardinal Tien Hospital. Participants 
were either self-referred or referred by health professionals 
who recommended screening for diabetes. The participants 
had no history of diabetes. After excluding frank diabetes, 
impaired fasting glucose, and impaired glucose tolerance 
(IGT), only 292 persons with NGT were included. They were 
defi ned to be “normal” according to the criteria published 

by the American Diabetes Association in 2003.21 None of 
the participants had a notable medical or surgical history. 
Before the study, they were instructed by physicians and 
dietitians to avoid any medication known to affect glucose 
or lipid metabolism and to maintain a stable diet for at least 
1 week before the study. On the day of the fi rst study, a 
complete routine examination was administered to exclude 
the presence of cardiovascular, endocrine, renal, hepatic, 
and respiratory disorders. The study protocol had been 
approved by the hospital’s institutional review board and 
ethics committee, and all participants had provided written 
informed consent prior to participation.

Study Protocol
Both tests were performed in the Clinical Research Center. 

On the day of the OGTT, after a 10-hour overnight fast, 
a standard 75-g OGTT was performed at 8:00 am. Blood 
was drawn before the glucose load and at 30, 60, 90, and 
120 minutes after the glucose load for the measurements 
of plasma glucose and insulin. The blood sample collected 
before the OGTT was also used to determine lipid profi les. At 
least 1 week from the fi rst study visit, the IST for estimating 
insulin action (glucose-mediated glucose disposal) was 
performed.22 After a 10-hour overnight fast, an intravenous 
catheter was set in a forearm vein for administration of 
somatostatin (250 μg/h, preceded by a 125-μg bolus), 
insulin (25 mU/m2/min), and glucose (240 mg /m2/min) 
(m2 refers to body surface area).22 A second intravenous 
catheter was placed in the contralateral forearm vein for 
blood collection. Blood was sampled at 30-minute intervals 
during the initial 150-minute period, and then at 10-minute 
intervals between 150 and 180 minutes of the infusion. The 
mean calculated from the last 4 measurements of glucose 
and insulin was used to determine the steady-state plasma 
glucose (SSPG) and the steady-state plasma insulin (SSPI) 
values. During this test, because the SSPI concentration 
was similar in all participants, the SSPG concentration was 
used as a direct measure of the ability of insulin to mediate 
glucose disposal; a high SSPG value indicated a high level 
of insulin resistance. According to the levels of SSPG, 
study participants were divided into tertiles. Participants 
in the highest tertile were defi ned as insulin-resistant. The 
remaining two-thirds of the participants were considered 
not insulin-resistant.23 The HOMA-IR was determined 
by the formula of fasting plasma insulin (FPI): (mU/L) X 
(fasting plasma glucose, FPG)(mmol/L)/22.5.12 

Laboratory Measurements
Plasma was separated within 1 hour of blood withdrawal 

and stored at – 30°C until the time of analysis. Plasma glucose 
was measured using the oxidase method by employing a 
glucose analyzer (YSI Model 203, Scientifi c Division, 
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Yellow Spring Instrument Company, Inc, Yellow Spring, 
Ohio, USA). Plasma insulin was assayed using a commercial 
solid-phase radioimmunoassay technique (Coat-A-Count 
insulin kit, Diagnostic Products Corporation, Los Angeles, 
California, USA) with intra- and inter-assay coeffi cients of 
variance of 3.3% and 2.5%, respectively. Serum triglyceride 
(TG) was measured by employing a Fuji Dri-Chem 3000 
analyzer (Fuji Photo Film Corporation, Minato-Ku, Tokyo, 
Japan) using the dry multilayer analytical slide method. 
Serum high-density lipoprotein cholesterol (HDL-C) 
concentration was determined with an enzymatic cholesterol 
assay method after dextran sulfate precipitation.

Statistical Analysis
Data were shown as mean ± standard deviation. One-

way ANOVA was used to evaluate the demographic data, 
clinical characteristics, and parameters derived from the 
tests of the 3 groups. The Bonferroni test was used for post 
hoc examination. 

All of the variables of interest were fi rst evaluated for their 
predictive performance by logistic regression. The receiver 
operating characteristic (ROC) curve of each variable (or 
model) was then plotted as the sensitivity (true-positive 
rate, y axis) against the 1-specifi city (false-positive rate, 
x-axis). The area under the ROC curve (aROC curve) was 
calculated by the trapezoidal rule, and used to determine the 
predictive accuracy of the models. In general, a large area 
corresponds to a high predictive accuracy of the variable 
(model).24 

Five binary logistic models were built. Insulin resistance 
was the dependent variable (i.e. 0 or 1 in statistical analysis), 
and all other baseline clinical and metabolic variables, 
including BMI, systolic blood pressure (SBP), diastolic 
blood pressure (DBP), TG, HDL-C, FPG, FPI, plasma 
glucose level at 120 minutes of OGTT (OGTT120g), and 
plasma insulin level at 120 minutes of OGTT (OGTT120i), 
were taken as the independent variables. Models were built 
to predict the occurrence of insulin resistance in the order 
of the simplest and most clinically available datum to the 
most complex datum that requires 2-hour OGTT results.
The 5 models are as follows: 

Model 0: BMI
Model 1: BMI + SBP + DBP + TG (Mets model)
Model 2: Model 1 + FPI
Model 3: Model 2 + OGTT120g
Model 4: Model 3 + OGTT120i (full model)
A model was selected using the enter method in binary 

logistic regression analysis. The Hosmer-Lemeshow test 
was used to assess the goodness of fi t of these models. A 
comparison of the aROC curves of the models was performed 
using the method developed by Hanley et al.24 From binary 

logistic regression, equations were built for each model. 
After inputting all of the factors into the model, optimal 
cut-point values were derived, and the point with the highest 
sensitivity and specifi city was selected. In other words, if the 
value derived from the equation is higher than the specifi ed 
cutoff point, the chance of having insulin resistance is high.

For the sensitivity test (i.e. external validation), we 
divided the participants into 2 groups. To build the model 
and equation, three-fourths of the study participants (n = 
219) were randomly selected. The remaining one-fourth 
(n = 73) were considered the external validation group. 
This procedure was repeated with Model 4 with these 219 
participants only because it was the most accurate model. 
Because the study group was only three-fourth of the 
original Model 4 group, the equation derived from Model 4 
to calculate the probability (P) of having insulin resistance 
was expected to contain the same factors but different 
coeffi cients. This equation was then used to calculate the P 
value of having insulin resistance in the external validation 
group. The sensitivity and specifi city of this equation in 
the external validation group were evaluated.

To verify its accuracy, we not only compared our models 
with HOMA-IR but also the McAuley’s equation. In order to 
do this, ROC curve was drawn by using McAuley’s equation 
and HOMA-IR and their aROC curves were calculated in 
the study cohort.

All statistical analyses were performed using the SPSS 
software system, version 13.0 (SPSS Inc., Chicago, IL, 
USA). P values less than .05 were considered statistically 
signifi cant.

Results
In total, 292 participants with NGT were enrolled and 

divided into 3 groups based on SSPG values. Group 1 
represented the lowest tertile of insulin resistance, whereas 
Group 3 represented the highest. The demographic data of 
these 3 groups are shown in Table 1. Participants in Group 
3 exhibited the highest BMI. After adjusting for age and 
BMI, Group 3 also had higher FPI, OGTT120g, OGTT120i, 
and HOMA-IR values than the other 2 groups. However, 
the TG level of Group 3 was only higher than that of Group 
1. There were no statistically signifi cant differences in age, 
sex, SBP, DBP, HDL-C, and FPG among these 3 groups. 

The aROC curves of individual parameters and models, 
their Hosmer-Lemeshow goodness-of-fi t tests, and tests 
of statistical difference between the models are shown in 
Table 2 and Figure 1, respectively. SBP, DBP, TG, and 
BMI had larger aROC curves than the diagonal reference 
line. This indicates that the prediction of insulin resistance 
can be improved by these parameters, but not by FPG 
or HDL-C. BMI demonstrated the greatest aROC curve 
(71.6%). Moreover, the aROC curves of FPI, OGTT120g, 
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Table 1. Baseline Demographic and Metabolic Characteristics of Study 
Participants Categorised by the Degree of Insulin Resistance

Variable
Group 1
(n = 97)

Group 2
(n = 98)

Group 3
(n = 97)

Age (y) 45.6 ± 10.3 44.9 ± 11.7 46.4 ±11.4

Sex (F/M) 57/40 53/45 55/42

BMI (kg/m2) 22.5 ± 2.1‡ 22.8 ± 3.2‡ 25.0 ± 3.3*†

SBP (mmHg) 114.7 ± 13.7 113.7 ± 14.0 119.1 ± 14.5

DBP (mmHg) 74.6 ± 7.9 74.3 ± 8.9 78.1 ± 9.5

TG (mmol/L) 1.0 ± 0.4‡ 1.1 ± 0.6 1.1 ± 0.51

HDL-C (mmol/L) 1.2 ± 0.4 1.1 ± 0.3 1.1 ± 0.3

HOMA-IR 1.7 ± 0.9‡ 1.9 ± 0.7‡ 3.5 ± 3.2*†

FPG (mmol/L) 5.1 ± 0.3 5.1 ± 0.4 5.2 ± 0.3

OGTT120g 
(mmol/L) 6.1 ± 1.1‡ 6.5 ± 1.2‡ 7.4 ± 1.6*†

FPI (pmol/L) 55.6 ± 21.1‡ 64.3 ± 28.2‡
125.4 

± 263.8*†

OGTT120i 
(pmol/L) 334.0 ± 198.4‡

443.5 
± 238.2‡

765.9 
± 408.0*†

SSPG (mmol/L) 4.6 ± 0.9†‡   7.9 ± 1.2*‡   12.9 ± 2.0*†

SSPI (pmol/L) 429.4 ± 77.3 453.4 ± 97.2 462.3 ± 104.2

BMI: Body mass index; SBP: Systolic blood pressure; DBP: Diastolic 
blood pressure; TG: Triglyceride; HDL-C: High-density lipoprotein 
cholesterol; FPG: Fasting plasma glucose; FPI: Fasting plasma insulin; 
HOMA-IR: Homeostasis model assessment of insulin resistance; 
OGTT120g: Plasma glucose level at 120 min of the 75-g OGTT; 
OGTT120i: Plasma insulin level at 120 min of the 75-g OGTT; SSPG: 
Steady-state plasma glucose; SSPI: Steady-state plasma insulin. Data 
are expressed as (mean ± SD).  
*P <0.05 against Group 1 
†P <0.05 against Group 2 
‡P <0.05 against Group 3

Table 2. Area Under the Receiver Operating Characteristic Curves of 
Metabolic Variables and Models Predicting Insulin Resistance

Models aROC curve ± 
SE (95% CI)

*P value 
(Hosmer- 

Lemeshow)

†P value for 
omnibus test

BMI (Model 0)  0.716 ± 0.032 
(0.653 – 0.778) 0.691        0.000

FPG  0.555 ± 0.036 
(0.485 – 0.625) 0.340     Non-

signifi cant

SBP
0.614 ± 0.036

(0.534 – 0.675)
0.682 0.002

DBP
0.640 ± 0.036

(0.570 – 0.710)
0.027 0.000

logTG
0.618± 0.035

(0.549 – 0.686)
0.738 0.002

HDL-C
0.556 ± 0.035

(0.487 – 0.626)
0.830       Non-

signifi cant

FPI
0.710 ± 0.035

(0.641 – 0.780)
0.079        0.000

OGTT120g
0.714 ± 0.032

(0.651 – 0.777)
0.742        0.000

OGTT120i
0.828± 0.027

(0.776 – 0.881)
0.236        0.000

HOMA-IR
0.705 ± 0.034

(0.649 – 0.757)
0.100        0.000

McAuley’ index
0.728 ± 0.032

(0.665 – 0.790)
    0.086        0.000

Model 1
0.729 ± 0.031

(0.668 – 0.791)
0.665        0.000

Model 2
0.771 ± 0.030

(0.713 – 0.830)
0.500        0.000

Model 3
0.801 ± 0.029

(0.745 – 0.857)
0.297        0.000

Model 4
0.851 ± 0.025

(0.802 – 0.900)
0.201        0.000

aROC curve: Area under the receiver operating characteristic curve; 
Model 0: BMI; Model 1: BMI+ SBP+ DBP+ TG ; Model 2: Model 
1+FPI; Model 3: Model 2+ OGTT120g; Model 4: Model 3+OGTT120i; 
BMI: Body mass index; SBP: Systolic blood pressure; DBP: Diastolic 
blood pressure; TG: Triglyceride; HDL-C: High-density lipoprotein 
cholesterol; FPG: Fasting plasma glucose; FPI: Fasting plasma insulin; 
OGTT120g: Plasma glucose level at 120 min of the 75-g OGTT; 
OGTT120i: Plasma insulin level at 120 min of the 75-g OGTT; HOMA-
IR: Homeostasis model assessment of insulin resistance; McAuley’ 
index, exp [2.63 – 0.28ln (FPI) – 0.31ln(TG)
*P values calculated using the Hosmer-Lemeshow goodness-of-fi t test. 
†P value calculated using an omnibus test.
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and OGTT120i were similar to or greater than that of BMI 
(71.0%, 71.4%, and 82.8%, respectively).

Compared to Model 0, Models 2, 3, and 4 had signifi cantly 
larger aROC curves and improved predictive accuracy 
(Table 2 and Fig. 1). Model 4 exhibited the largest aROC 
curve of the models and the optimal ability to predict 
insulin resistance. In addition to the observation of aROC 
curves, the probability of having insulin resistance was also 
be obtained from logistic regression. The basic equation 
for all models was the same: (P = ex/(1+ex)). However, 
each model exhibited unique parameters for calculating 
probability. For instance, the equation of Model 4 for 293 
participants is shown as follows: 

x = – 9.653 + 0.183(BMI) - 0.005(SBP) + 0.023(DBP) 
+ 0.947(logTG) + 0.007(FPI) + 0.159(OGTT120g) 
+ 0.03(OGTT120i). 

If the calculated P value is higher than the cut-off point 
(provided in the next paragraph), the value indicates a high 
probability of having insulin resistance. In the meanwhile, 
the aROC curves of the McAuley’s index and HOMA-IR 
were also calculated and it could be noted that the aROC 
curves of Model 2, 3 and 4 were greater than those of 
McAuley’s index and HOMA-IR.

Figure 1 shows the ROC curves of the 5 models. For Model 
2, a cutoff of 0.30 provided the highest sum of sensitivity 
(70.1%) and specifi city (70.3%). For Model 4, a cutoff of 
0.29 provided the highest sum of sensitivity (76.0%) and 
specifi city (77.1%). 

Although the factors in the sensitivity test were the same, 
a reduction in sensitivity occurred compared to the equation 

built from the whole study cohort. With this equation of 
Model 4, the P value was also calculated for the external 
validation group. Participants were classifi ed as having or 
lacking insulin resistance according to the P value. These 
results were then compared to the classifi cation of measured 
insulin resistance. The comparison yielded 68.0% sensitivity 
and 85.4% specifi city.

Discussion
Several past studies have been conducted to identify 

non-diabetic patients with insulin resistance. Stern et al 
developed a tree model using routine clinical measurements 
in non-diabetic patients.19 The most accurate tree model for 
predicting insulin resistance demonstrated an 85.0% aROC 
curve, 78.7% sensitivity, and 70.6% specifi city. In addition, 
McAuley et al used product-moment correlations to build 
an equation for predicting insulin sensitivity in patients.20 
They found that the variables with the most accurate 
predicting power were FPI and fasting TG. In the present 
study, we also built models to predict the occurrence of 
insulin resistance in non-diabetic patients. However, we 
added the results of the OGTT to the model rather than 
using only routine laboratory measurements. We intended 
to increase the aROC curve to enhance the sensitivity and 
specifi city of the model. 

Previous research has established that a high BMI 
corresponds to high insulin resistance.13,25 Our study results 
showed that BMI was the central component in predicting 
insulin resistance (Table 2). This is in agreement with 
Stern et al, who consistently used BMI to identify insulin 

Fig. 1. Area under the receiver operating characteristic curves (aROC curves) of the models. The arrow indicates the arbitrarily selected risk score 
cut-off (0.29) of Model 4, which has a sensitivity and specifi city of 76.0% and 77.1%, respectively.
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Comparison of aROC curves P values

Model 1 vs BMI 0.253

Model 2 vs BMI 0.013

Model 3 vs BMI 0.001

Model 4 vs BMI <0.001

Model 2 vs Model 1 0.030

Model 3 vs Model 2 0.032

Model 4 vs Model 3 0.009

Model 4 vs Model 2 0.001

aROC curve: Area under the receiver operating characteristic curve; 
Model 0: body mass index (BMI); Model 1: BMI + systolic blood 
pressure + diastolic blood pressure + triglyceride; Model 2: Model 1+ 
fasting plasma insulin; Model 3: Model 2+ plasma glucose level at 120 
min of the 75-g OGTT; Model 4: Model 3+ plasma insulin level at 120 
min of the 75-g OGTT; P values, for testing the differences between 2 
aROC curves (calculated using the method developed by Hanley et al).
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resistance in the fi rst 2 layers of their 3 different tree models. 
However, the average BMI in the Stern et al study was much 
higher than that of our study. This is a common occurrence 
when similar studies are conducted between Caucasian 
and Chinese populations. In the McAuley et al study, only 
insulin and TG were important predictors. However, the 
BMI of the participants in the McAuley et al study was 
higher than that of our study (27.5 ± 5.3 kg/m2 versus 23.3 
± 3.1 kg/m2). In addition, the strong correlation between 
BMI and TG might have also reduced the signifi cance of 
BMI in their study. Nevertheless, BMI is a crucial factor 
in Chinese populations.

The association between insulin levels and insulin 
resistance in normoglycaemic patients has been widely 
explored, and it has been established that the insulin level 
is increased in patients with insulin resistance.26,27 In 
agreement with McAuley et al, McLaughlin et al reported 
that FPI was a valuable predictor of insulin resistance in 
normoglycemic patients.20,23 In the tree models proposed 
by Stern et al, the aROC curve increased from 85.1% to 
90.0% after conducting HOMA-IR, which is a product of 
FPG and FPI. In the present study, we found that the aROC 
curve of FPI is similar to that of BMI (71.0% and 71.6%, 
respectively). After adding FPI to Model 1, the aROC curve 
of Model 2 signifi cantly increased from 72.9% to 77.1%. 
This indicates that BMI and FPI contribute to insulin 
resistance using different pathways.

Postprandial hyperglycemia is one of the earliest glucose 
dysregulations detected in patients with type 2 diabetes 
and IGT.28,29 This metabolic abnormality initiates before 
the onset of clinical diabetes because of the loss of fi rst-
phase insulin secretion and increased insulin resistance.30,31 

Therefore, measuring the postprandial plasma glucose and 
insulin levels can facilitate recognition of early metabolic 
derangements. Thus, the role of the OGTT is vital because 
it can provide changes in plasma glucose and insulin levels 
after glucose challenges. The OGTT is not only a standard 
method for diagnosing glucose intolerance but also a tool for 
assessing insulin resistance in population studies.21,32 In our 
study, Model 3 was built by adding OGTT120g to Model 
2, forming a larger aROC curve (80.1%) that provided a 
signifi cantly improved predictive performance (P = 0.032). 
This result indicates that OGTT120g exhibits an independent 
effect on insulin resistance, which is compatible with other 
studies on the topic.11,33,34 

OGTT120i demonstrated the largest aROC curve (82.8%) 
of all the individual factors. The inclusion of OGTT120i as 
one of the factors was the only difference between Model 
3 and Model 4. Because of this inclusion, the aROC curve 
increased to 85.1%. The post-challenge insulin level may 
have contributed a certain percentage of insulin resistance 
that cannot be explained by the other factors. Accordingly, 

Lakkso et al reported that the 2-hour post-load insulin level 
is associated with insulin resistance in patients with NGT.16 
Our study extends the fi nding by Lakkso et al16 to clinical 
practice. In conclusion, although the OGTT is not routinely 
performed in clinical practice because of its inconvenience 
and high cost, it is considerably helpful in identifying insulin 
resistance in patients with NGT.

Compared to Model 4, Model 2 (the combination of Mets 
components and FPI) was simpler and more practical, but 
exhibited lower sensitivity and specifi city. In contrast, 
Model 4 featured the greatest predictive power but requires 
OGTT data, which is impractical for use in routine clinical 
screening. Compared to the most widely used clinical 
equation, HOMA-IR (Table 2, aROC = 70.2%), Models 
2, 3, and 4 all provided better predictive accuracy (P = 
0.006, P < 0.001, and P < 0.001, respectively). Finally, 
since McAuley also built an equation for estimating IR, 
we also compared his equation with our models. It could 
be shown that the aROC was 72.8%. From this curve, 
the best specifi city and sensitivity of the arbitrary cut-off 
point (0.34) were 67.0% and 66.7% respectively, which 
is less accurate than our proposed models. In conclusion, 
considering the economic aspects of health screening, 
Model 2 is more appropriate and practical than Model 4. 
Moreover, Model 2 also showed greater predictive accuracy 
than the available equations.

In our study, Model 4 was tested again for sensitivity 
with three-quarters of the participants. The results of 
the comparison showed high sensitivity and specifi city. 
However, we are aware of the limitations of the study. First, 
this is a cross-sectional study. A longitudinal study may 
yield more conclusive results. Second, we did not consider 
the effects of exercise or smoking, which are all known 
to be related to insulin resistance. However, despite these 
limitations, our results can be used easily and extensively 
in clinical practice.

Conclusion
In conclusion, we demonstrated that FPI, OGTT120g, and 

OGTT120i are independently related to insulin resistance 
and can further improve the aROC curves of predictive 
models. In practice, insulin resistance can be accurately 
predicted in NGT patients with a sensitivity of 70.1% and 
a specifi city of 70.3% using Mets components and FPI. In 
contrast, Model 4 provides the optimal prediction model 
for insulin resistance, but lacks practicality because OGTT 
data are required. 
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