• Vol. 39 No. 12, 909–912
  • 15 December 2010

Elevated Level of Carbonyl Compounds Correlates with Insulin Resistance in Type 2 Diabetes

ABSTRACT

Introduction: Recent periodicals direct that reactive carbonyl compounds are formed due to existing oxidative stress in type 2 diabetes mellitus, which further nonenzymatically react with proteins and lipids to form irreversible advanced glycation end products (AGE) and advanced lipoxidation end products (ALE). In type 2 diabetes mellitus, insulin resistance plays a pivotal role in hyperglycaemia. In this study, we tried to find the relation between insulin resistance and carbonyl stress.

Materials and Methods: Forty-seven patients of type 2 diabetes mellitus (age 51 ± 5.06 years) were selected and fasting plasma glucose, serum insulin, total carbonyl compounds, HbA1c, thiobarbituric acid reacting substances (TBARS) and Trolox equivalent antioxidant capacity (TEAC) were estimated using standard protocols. Homeostatic model assessment of insulin resistance (HOMA-IR) was evaluated from fasting plasma glucose and serum insulin levels.

Results: We found highly significant correlations of carbonyl compounds with HOMA-IR, fasting plasma glucose and glycated haemoglobin (HbA1c). Correlations of lipid peroxidation end product, TBARS were not so significant.

Conclusion: Findings from this study indicate that the level of carbonyl compounds can be a biomarker of insulin resistance in type 2 diabetes mellitus.


With rapid development of therapy, the mortality from acute complications of diabetes mellitus (DM) has decreased, but mortality from chronic complications like diabetic nephropathy has increased. The incidence and prevalence of type 2 DM is increasing in developing countries.

This article is available only as a PDF. Please click on “Download PDF” on top to view the full article.